(acetylacetone)  C5H8O2IUPAC 2,4- acac4 2[1]
アセチルアセトン
識別情報
CAS登録番号 123-54-6 チェック
特性
化学式 C5H8O2
モル質量 100.13 g/mol
外観 無色透明の液体
密度 0.98 g/mL
融点

−23 ℃

沸点

140 ℃

への溶解度 16 g/100 mL
危険性
EU分類 Harmful (Xn)
EU Index 606-029-00-0
NFPA 704

2
2
0
Rフレーズ R10, R22
Sフレーズ (S2), S21, S23, S24/25
引火点 34 ℃
発火点 340 ℃
爆発限界 2.4–11.6%
特記なき場合、データは常温 (25 °C)・常圧 (100 kPa) におけるものである。

芳香を持つ無色透明の液体で、水には溶けにくいが有機溶媒には混和する。

性質

編集

 C2v [2]211.74210THF 7.22 0.23 [3]
 
アセチルアセトンのケト-エノール互変異性

合成

編集

[4]

 

2[5]

 

[5]

 

 

     

アニオンとしてのアセチルアセトン

編集

アセチルアセトンの共役塩基は C5H7O
2
で、アセチルアセトナートと呼ばれる。実際には溶液中で単独のイオンとはならず、Na+ などの対応するカチオンと結合した状態となる。しかしフリーなアニオンが存在するという前提で議論されることが多い。ナトリウムアセチルアセトナートは、アセチルアセトンを水-メタノールの混合溶媒中で水酸化ナトリウムと反応させることで得られる[6]

錯体化学

編集
 
Λ-Mn(acac)3 の分子模型

2 Mn(acac)3[7]VO(acac)2Cu(acac)2 Fe(acac)3 Co(acac)3 M(acac)3 [8]23M(acac)2  M(acac)3 NMR

金属錯体の例

編集

(II)

Cu(acac)2  Cu(NH3)2+
4 [9]

(I)

2[10]

(III)

Mn(acac)3 1[7]Mn(acac)3 8

(II)

 Ni(acac)2 [Ni(acac)2]3 3031

炭素を用いた結合

編集

C5H7O
2 3 Pt2+  Ir3+ Ir(acac)3 Ir(acac)3LL = 1-IR-CO 1535 cm-1 - C=O 1655 cm-1 

他の反応

編集



C3C12C1



尿



NRR = 



- 2- Fe2+ Acinetobacter johnsonii [11]

 



-

 

関連項目

編集

脚注

編集
  1. ^ 法規情報 (東京化成工業株式会社)
  2. ^ Caminati, W.; Grabow, J.-U. (2006). “The C2v Structure of Enolic Acetylacetone”. J. Am. Chem. Soc. 128: 854–857. doi:10.1021/ja055333g. 
  3. ^ Reichardt, C. (2003). Solvents and Solvent Effects in Organic Chemistry (3rd ed ed.). Weinheim: Wiley-VCH. ISBN 3-527-30618-8 
  4. ^ Hardo Siegel, Manfred Eggersdorfer (2002). “Ketones”. Ullmann’s Encyclopedia of Industrial Chemistry. Wienheim: Wiley-VCH. doi:10.1002/14356007.a15_077 
  5. ^ a b C. E. Denoon, Jr. (1940). "Acetylacetone". Organic Syntheses (英語): 6.; Collective Volume, vol. 3, p. 16
  6. ^ Robert G. Charles (1963). "Tetraacetylethane". Organic Syntheses (英語).; Collective Volume, vol. 4, p. 869
  7. ^ a b Snider, B. B. (2004). “Manganese(III) Acetylacetonate”. In Ed: L. Paquette. Encyclopedia of Reagents for Organic Synthesis. New York: J. Wiley & Sons. doi:10.1002/047084289X.rm022 
  8. ^ Fawcett, W.; Opallo, M. (1992). “Kinetic parameters for heterogeneous electron transfer to tris(acetylacetonato)manganese(III) and tris(acetylacetonato)iron(III) in aproptic solvents”. J. Electroanal. Chem. 331: 815–830. doi:10.1016/0022-0728(92)85008-Q. 
  9. ^ Parish, E. J.; Li, S. (2004). “Copper(II) Acetylacetonate”. In Paquette, L. Ed.. Encyclopedia of Reagents for Organic Synthesis. New York: John Wiley & Sons. doi:10.1002/047084289X.rc204.pub2 
  10. ^ Parish, E. J.; Li, S. (2004). “Copper(I) Acetylacetonate”. In Paquette, L. Ed.. Encyclopedia of Reagents for Organic Synthesis. New York: J. Wiley & Sons. doi:10.1002/047084289X.rc203. 
  11. ^ Straganz, G. D.; Glieder, A.; Brecker, L.; Ribbons, D. W.; Steiner, W. (2003). Acetylacetone-Cleaving Enzyme Dke1: A Novel C-C-Bond-Cleaving Enzyme. 369. Biochem. J.. pp. 573–581. doi:10.1042/BJ20021047. 

参考文献

編集
  • 国立環境研究所. “アセチルアセトン”. WebKis-Plus. 2018年6月16日閲覧。
  • Bennett, M. A.; Heath, G. A.; Hockless, D. C. R.; Kovacik, I.; Willis, A. C. (1998). “Alkene Complexes of Divalent and Trivalent Ruthenium Stabilized by Chelation. Dependence of Coordinated Alkene Orientation on Metal Oxidation State”. J. Am. Chem. Soc. 120: 932–941. doi:10.1021/ja973468j. 
  • Albrecht, M.; Schmid, S.; de Groot, M.; Weis, P.; Fröhlich, R. (2003). “Self-assembly of an Unpolar Enantiomerically Pure Helicate-type Metalla-cryptand”. Chem. Commun: 2526–2527. doi:10.1039/b309026d. 
  • Charles, R. G. (1963). Inorg. Synth. 7: 183. doi:10.1002/9780470132388. 
  • Richert, S. A.; Tsang, P. K. S.; Sawyer, D. T. (1989). Inorg. Chem. 28: 2471. doi:10.1021/ic00311a044. 
  • Wong-Foy, A. G.; Bhalla, G.; Liu, X. Y.; Periana, R. A. (2003). “Alkane C-H Activation and Catalysis by an O-Donor Ligated Iridium Complex”. J. Am. Chem. Soc. 125: 14292–14293. doi:10.1021/ja037849a.