塩生植物(えんせいしょくぶつ)とは、高塩濃度に耐える種子植物を言う。海岸や塩湖の周辺に生育し、独特の群落を形成する。なお、地下水の塩濃度が高い半乾燥地域に生育する野生植物なども、塩生植物に分類される。

概説

編集



[1]

生育地

編集
 
英国南部の塩性湿地

湿


種類

編集
 
西表島のマングローブ

湿鹿

[][]湿

湿

綿1

塩害が起こる理由

編集

過剰な塩類は、主に下記の2つの面から植物に影響を与える。

浸透圧ストレス

編集

過剰な塩類にさらされた植物が最初に受けるのが、浸透圧ストレス(英:osmotic stress)であると言われる[2]。浸透圧は溶液中の溶質の数に比例し、水溶液の場合、溶媒である水は、溶質の数の少ない方から、溶質の多い方へと移動しようとする。淡水に比べて、植物の体内に存在する水には多くの溶質が溶け込んでいるため、周囲が淡水であれば、植物は浸透圧に従って、容易に外部から水を取り込むことができる。しかし、塩類が根周囲の水に高濃度で溶解しているほど、植物の体内に存在する水の浸透圧に近付く。さらに塩類が高濃度に溶解していると、もはや、植物の体内の水が、根周囲の水へと吸い出される方向に浸透圧が作用し、植物は水を吸うことができなくなるため、乾燥ストレスを受けた時に似た状態に陥る。こうなると植物体に水が充分に行き渡らなくなるため、一般的な経路による光合成において電子の供与体として必要な水が不足して光合成を行いにくくなる、葉が小さくなる、新しい葉が出るのが遅れる、側芽が出なくなるなどの影響が出る。

イオン特異的なストレス

編集

ナトリウムが細胞内に蓄積すると、カリウムの濃度勾配によって保たれている膜電位が維持できなくなる上に、多くの酵素の働きが阻害され、様々な細胞の活動に支障をきたすことが判っている[3]

耐塩性のメカニズム

編集

したがって、耐塩性とは、浸透圧への耐性と、代謝に過剰なイオンが及ぼす害を防ぐことができる性質とを合わせたものを指す。

耐塩性の植物は、幾つかのメカニズムを組み合わせて持っている。中には、耐塩性でない普通の植物も持っているものもある。海水の飛沫・乾燥による土壌中の塩類の濃縮・不適切な灌漑などにより、高濃度の塩類によるストレスを受けた一般的な植物(中生植物、塩生植物ではない植物)は、下記の適合溶質の蓄積・液胞への塩分の隔離などと同様の機構を持つが、塩生植物とそうでない植物の違いはまだ明らかになっていない部分が多い。

クチクラ層の発達

編集

葉にクチクラ層を発達させることで、水分の葉からの蒸散を抑えることにより、根圏の高浸透圧による乾燥ストレスに耐え、また根からの水分吸収に伴って塩分が流入するのを防ぐ。

カスパリー線の発達

編集

根の内皮を取り囲むように存在するカスパリー線が、内皮の外側と内側を隔てるバリアーとして機能し、道管師管への塩分の流入を防ぐ。このような戦略を取った植物の例としては、中国の野生植物のPuccinellia tenuifloraが挙げられる[4]

落葉

編集

流入した塩分を古い葉に集めて落葉させ、若い葉を守る。

塩類腺と塩嚢細胞

編集

葉の表面に、塩類腺(えんるいせん)と呼ばれる塩を排出するための腺や、塩嚢細胞(えんのうさいぼう)と呼ばれる塩を蓄積するための器官を持ち、根から流入した塩をそれらの器官に集めることで体内への蓄積を防ぐ耐塩性植物もある。塩類腺を持つ植物としては、例えばヒルギダマシが挙げられる。また、塩嚢細胞を持つ植物としては、例えばアイスプラントが挙げられる。

根からの排出

編集

耐塩性の植物もそうでない植物も、一般にナトリウム/プロトン対向輸送体(ナトリウム・プロトンアンチポーター;英:sodium proton antiporter;略称NHAまたはSOS1)と呼ばれる輸送タンパク質を持っている。細胞膜上に存在し、プロトン(水素イオン)を細胞内に入れる代わりに、ナトリウムを細胞外に排出する働きを持ったタンパク質で、根においては、流入したナトリウムを根の外に運び出したり、道管に運び込んだり(道管に入ったナトリウムは葉まで運ばれ、液胞に貯められたり塩類腺から排出されたりする)する働きを担っている[5]。耐塩性植物のThellungiella salsugineaThellungiella parvulaでは、近縁の塩感受性植物シロイヌナズナに比べて、このトランスポーターが多く発現していることが明らかになっている[6] [7]

液胞への隔離

編集

成長した植物細胞に見られる液胞は、水の他各種養分を貯蔵する役割を担っているが、細胞に流入した過剰な塩類を隔離するための貯蔵庫としても働くことが知られている。葉が肉厚で大きな液胞を持った植物において、特に大きな役割を果たす。アッケシソウオカヒジキでは液胞に貯めたナトリウムがかなりの量に達するため、古くからアッケシソウ属の植物を焼いてソーダ灰が作られた。地中海カスピ海の沿岸地域にはアッケシソウ属を利用したソーダ工業が1850年代まで存在していた[8]。(en:Glasswort

適合溶質

編集

()











DMSP


引用文献

編集
  1. ^ T. J. Flowers and T. D. Colmer (2008). “Salinity tolerance in halophytes”. New Phytologist 179: 945-963. doi:10.1111/j.1469-8137.2008.02531.x. 
  2. ^ R. Munns and M. Tester (2008). “Mechanisms of Salinity Tolerance”. Annu. Rev. Plant Biol. 59: 651-81. doi:10.1146/annurev.arplant.59.032607.092911. (review)
  3. ^ N. Tuteja (2007). “Mechanisms of high salinity tolerance in plants”. Methods Enzymol. 428: 419-38. doi:10.1016/S0076-6879(07)28024-3. (review)
  4. ^ YH. Peng, YF. Zhu, YQ. Mao, SM. Wang, WA. Su, ZC. Tang (2004). “Alkali grass resists salt stress through high [K+] and an endodermis barrier to Na+”. J Exp Bot. 55: 939-49. doi:10.1093/jxb/erh071. 
  5. ^ H Shi, FJ. Quintero, JM. Pardo, JK. Zhu (2002). “The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants”. Plant Cell 14: 465-77. doi:10.1105/tpc.010371. 
  6. ^ DH. Oh, “et al”. (2009). “Loss of halophytism by interference with SOS1 expression”. Plant Physiol. 151: 210-22. doi:10.1104/pp.109.137802. 
  7. ^ DH. Oh, M Dassanayake, JS. Haas, et al. (2010). “Genome structures and halophyte-specific gene expression of the extremophile “Thellungiella parvula” in comparison with “Thellungiella salsuginea” (“Thellungiella halophila”) and Arabidopsis.”. Plant Physiol. 154 (3): 1040-52. doi:10.1104/pp.110.163923. 
  8. ^ 「朝日百科植物の世界 7巻」p264,p267