(Xenobiotics)
P450

-S-

131P4502-S-3

透過障壁と解毒

編集

[1] [2]  [1]1 [3][4]

解毒の段階

編集
 
脂溶性生体外物質代謝の第1相、第2相

3

第1相(変性)

編集

11P450O-N-S-[5]P-450[6]

 

1P450CYPNADPH11C-HC-OH()1 (HOCH2CN)2

1[7]1()N-O-

酸化

編集

還元

編集

P450NADPH:ferrihemoprotein oxidoreductaseNADPH-NADPH:P450 oxidoreductaseP450 reductasePORCPRCYPORFAD FMNNADPH-P450P450 POR/P450

 

P450


加水分解

編集

第2相(抱合)

編集

2(GSH)  (-COOH) (-OH) (-NH2) (-SH)1GSH

[1] -S-
機構 酵素[8] 補因子[8] 場所[8]
メチル化 メチルトランスフェラーゼ S-アデノシルメチオニン 肝臓、腎臓、肺、中枢神経系
硫酸抱合 スルホトランスフェラーゼ 3'-ホスホアデノシン-5'-ホスホ硫酸 肝臓、腎臓、腸
アセチル化
  • N-アセチルトランスフェラーゼ
  • 胆汁酸CoA:アミノ酸N-アシル転移酵素(BAA)
アセチルCoA 肝臓、肺、脾臓、胃粘膜、赤血球、リンパ球
グルクロン酸抱合 UDP-グルクロン酸転移酵素 UDP-グルクロン酸 肝臓、腎臓、腸、肺、皮膚、前立腺、脳
グルタチオン抱合 グルタチオン-S-トランスフェラーゼ グルタチオン 肝臓、腎臓
グリシン抱合 N-アセチルトランスフェラーゼ アセチルCoA 肝臓、腎臓

第3相(追加変性及び排出)

編集

2[9] γ-3P[10] ABCATP[11]2[12]

内因性の毒素

編集


代謝の場所

編集


薬物代謝に影響する要因

編集

P4502N-N-

P450130[13]

歴史

編集

19[14] 1920調1947T[15]1961-S-[16]1962P450[17]1963P450[18][19]

関連項目

編集

参考文献

編集
  1. ^ a b c Jakoby WB, Ziegler DM (December 1990). “The enzymes of detoxication”. J. Biol. Chem. 265 (34): 20715–8. PMID 2249981. http://www.jbc.org/cgi/reprint/265/34/20715. 
  2. ^ Mizuno N, Niwa T, Yotsumoto Y, Sugiyama Y (September 2003). “Impact of drug transporter studies on drug discovery and development”. Pharmacol. Rev. 55 (3): 425–61. doi:10.1124/pr.55.3.1. PMID 12869659. 
  3. ^ Thornalley PJ (July 1990). “The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life”. Biochem. J. 269 (1): 1–11. PMC 1131522. PMID 2198020. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1131522/. 
  4. ^ Sies H (March 1997). “Oxidative stress: oxidants and antioxidants” (PDF). Exp. Physiol. 82 (2): 291–5. PMID 9129943. http://ep.physoc.org/cgi/reprint/82/2/291.pdf. 
  5. ^ Guengerich FP (June 2001). “Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity”. Chem. Res. Toxicol. 14 (6): 611–50. doi:10.1021/tx0002583. PMID 11409933. 
  6. ^ Schlichting I, Berendzen J, Chu K, Stock AM, Maves SA, Benson DE, Sweet RM, Ringe D, Petsko GA, Sligar SG (March 2000). “The catalytic pathway of cytochrome p450cam at atomic resolution”. Science 287 (5458): 1615–22. doi:10.1126/science.287.5458.1615. PMID 10698731. 
  7. ^ Akagah B, Lormier AT, Fournet A, Figadère B (December 2008). “Oxidation of antiparasitic 2-substituted quinolines using metalloporphyrin catalysts: scale-up of a biomimetic reaction for metabolite production of drug candidates”. Org. Biomol. Chem. 6 (24): 4494–7. doi:10.1039/b815963g. PMID 19039354. 
  8. ^ a b c Liston HL, Markowitz JS, DeVane CL (October 2001). “Drug glucuronidation in clinical psychopharmacology”. J Clin Psychopharmacol 21 (5): 500–15. doi:10.1097/00004714-200110000-00008. PMID 11593076. 
  9. ^ Boyland E, Chasseaud LF (1969). “The role of glutathione and glutathione S-transferases in mercapturic acid biosynthesis”. Adv. Enzymol. Relat. Areas Mol. Biol.. Advances in Enzymology – and Related Areas of Molecular Biology 32: 173–219. doi:10.1002/9780470122778.ch5. ISBN 9780470122778. PMID 4892500. 
  10. ^ Homolya L, Váradi A, Sarkadi B (2003). “Multidrug resistance-associated proteins: Export pumps for conjugates with glutathione, glucuronate or sulfate”. BioFactors 17 (1–4): 103–14. doi:10.1002/biof.5520170111. PMID 12897433. 
  11. ^ König J, Nies AT, Cui Y, Leier I, Keppler D (December 1999). “Conjugate export pumps of the multidrug resistance protein (MRP) family: localization, substrate specificity, and MRP2-mediated drug resistance”. Biochim. Biophys. Acta 1461 (2): 377–94. doi:10.1016/S0005-2736(99)00169-8. PMID 10581368. 
  12. ^ Commandeur JN, Stijntjes GJ, Vermeulen NP (June 1995). “Enzymes and transport systems involved in the formation and disposition of glutathione S-conjugates. Role in bioactivation and detoxication mechanisms of xenobiotics”. Pharmacol. Rev. 47 (2): 271–330. PMID 7568330. 
  13. ^ Rostami-Hodjegan A, Tucker GT (February 2007). “Simulation and prediction of in vivo drug metabolism in human populations from in vitro data”. Nat Rev Drug Discov 6 (2): 140–8. doi:10.1038/nrd2173. PMID 17268485. 
  14. ^ Murphy PJ (June 2001). “Xenobiotic metabolism: a look from the past to the future”. Drug Metab. Dispos. 29 (6): 79–80. PMID 11353742. http://dmd.aspetjournals.org/cgi/content/full/29/6/779. 
  15. ^ Neuberger A, Smith RL (1983). “Richard Tecwyn Williams: the man, his work, his impact”. Drug Metab. Rev. 14 (3): 559–607. doi:10.3109/03602538308991399. PMID 6347595. 
  16. ^ Booth J, Boyland E, Sims P (June 1961). “An enzyme from rat liver catalysing conjugations with glutathione”. Biochem. J. 79 (3): 516–24. PMC 1205680. PMID 16748905. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1205680/. 
  17. ^ Omura T, Sato R (April 1962). “A new cytochrome in liver microsomes”. J. Biol. Chem. 237: 1375–6. PMID 14482007. http://www.jbc.org/cgi/reprint/237/4/PC1375. 
  18. ^ Estabrook RW (December 2003). “A passion for P450s (remembrances of the early history of research on cytochrome P450)”. Drug Metab. Dispos. 31 (12): 1461–73. doi:10.1124/dmd.31.12.1461. PMID 14625342. 
  19. ^ Estabrook RW, Cooper DY, Rosenthal O (1963). “The light reversible carbon monoxide inhibition of steroid C-21 hydroxylase system in adrenal cortex”. Biochem Z 338: 741–55. PMID 14087340.