Starting in 1996, Alexa Internet has been donating their crawl data to the Internet Archive. Flowing in every day, these data are added to the Wayback Machine after an embargo period.
Starting in 1996, Alexa Internet has been donating their crawl data to the Internet Archive. Flowing in every day, these data are added to the Wayback Machine after an embargo period.
I den moderne definition er det undersøgelsen af aksiomatisk definerede abstrakte strukturer ved brug af logik, som er det fælles udgangspunkt. De specifikke strukturer, der undersøges, har ofte deres udgangspunkt i naturvidenskaben, oftest i fysikken. Den beskriver en uvirkelig ideel verden hvor fx rette eller parallelle linjer findes modsat den virkelige verden, men matematikere definerer og undersøger også strukturer udelukkende for matematikkens egen skyld, for eksempel fordi de finder ud af, at en struktur giver en samlende generalisering, eller at der findes et værktøj, der kan hjælpe i flere forskellige grene af matematikken.
Historisk set er matematikken opstået ud fra behovet for at lave beregninger i handel, for at opmåle land og for at forudsige astronomiske begivenheder. Disse tre behov kan groft relateres til en bred underopdeling af matematikken i studiet af struktur, rum og ændring.
Studiet af struktur starter med tallene, i begyndelsen de velkendte naturlige talogheltallene. De regler, der gælder for aritmetiske operationer, er optegnet i elementær algebra, og de dybere egenskaber ved heltallene studeres i talteorien. Undersøgelsen af metoder til at løse ligninger fører til studiet af abstrakt algebra. Det for fysikerne vigtige begreb vektorer, der er generaliseret til vektorrummet og studeret i lineær algebra, tilhører de to grene struktur og rum.
Studiet af rummet starter med studiet af geometri, først den euklidiske geometriogtrigonometri i det sædvanlige tredimensionale rum, men senere også generaliseret til ikke-euklidisk geometri som spiller en central rolle i den generelle relativitetsteori. De moderne områder differentialgeometriogalgebraisk geometri generaliserer geometri i forskellige retninger: differentialgeometri fremhæver begreberne koordinatsystemer, glathed og retning, mens geometriske objekter i algebraisk geometri beskrives som løsninger til et sæt af ligninger. Gruppeteori undersøger på en abstrakt måde begrebet geometri og giver en sammenhæng mellem studiet af rum og struktur. Topologi giver en sammenhæng mellem studiet af rum og studiet af ændring ved at fokusere på begrebet kontinuitet.
At forstå og beskrive ændringer i målelige størrelser er det centrale emne i naturvidenskab, og infinitesimalregningen er udviklet som et særdeles brugbart værktøj til at gøre præcis det. Det centrale begreb, man bruger til at beskrive en variabel, der ændrer sig, er en funktion. Mange problemer leder helt naturligt til relationen mellem mængde og størrelsen af dens ændring, og metoderne til at løse disse er studeret i emnet differentialligninger. Tallene, man bruger til at repræsentere kontinuerlige mængder, er de reelle tal, og det detaljerede studium af deres egenskaber er kendt som reel analyse. Af forskellige årsager er det bekvemt at generalisere til komplekse tal, som studeres i en kompleks analyse. Funktionalanalyse fokuserer på et (typisk uendeligt-dimensionalt) rum af funktioner, som danner basis for blandt andet kvantemekanik.
Dacomputere i sin tid blev opfundet, blev flere omkringliggende problemer tacklet af matematikere, og det ledte til områderne beregnelighedoginformationsteori. Mange af disse spørgsmål er nu undersøgt under teoretisk datalogi.
Computere har også hjulpet til ved emner som kaosteori, som handler om at mange dynamiske systemer i naturen adlyder love, der gør, at deres adfærd bliver uforudsigelig i praksis, selvom det er deterministisk i teorien. Kaosteori er tæt forbundet med fraktal geometri.
Et vigtigt område i anvendt matematik er sandsynlighedsregning, som muliggør beskrivelse, analyse og forudsigelse af tilfældige fænomener og er brugt i alle videnskaber.
Numerisk analyse undersøger metoder til at udføre beregninger på computer.
Den følgende liste af emner repræsenterer én måde at organisere matematikkens grene på:
Mathematical Society of Japan: Encyclopedic Dictionary of Mathematics, 2nd ed. MIT Press, Cambridge, Mass., 1993. Definitioner, teoremer og referencer.
Michiel Hazewinkel (ed.): Encyclopaedia of Mathematics. Kluwer Academic Publishers 2000. En oversat og udvidet version af den sovjetiske matematik encyklopædi, i ti (store) bøger, det mest komplette og autoritative værk der er tilgængeligt. Også som paperback og på CD-ROM.
Gullberg, Jan: Mathematics—From the Birth of Numbers. W.W. Norton, 1996. Et encyklopædisk overblik over matematikken i et nutidigt og simpelt sprog