git-fetch - Download objects and refs from another repository
| Aug | SEP | Oct |
| 05 | ||
| 2020 | 2021 | 2022 |
COLLECTED BY
Formed in 2009, the Archive Team (not to be confused with the archive.org Archive-It Team) is a rogue archivist collective dedicated to saving copies of rapidly dying or deleted websites for the sake of history and digital heritage. The group is 100% composed of volunteers and interested parties, and has expanded into a large amount of related projects for saving online and digital history.
History is littered with hundreds of conflicts over the future of a community, group, location or business that were "resolved" when one of the parties stepped ahead and destroyed what was there. With the original point of contention destroyed, the debates would fall to the wayside. Archive Team believes that by duplicated condemned data, the conversation and debate can continue, as well as the richness and insight gained by keeping the materials. Our projects have ranged in size from a single volunteer downloading the data to a small-but-critical site, to over 100 volunteers stepping forward to acquire terabytes of user-created data to save for future generations.
The main site for Archive Team is at archiveteam.org and contains up to the date information on various projects, manifestos, plans and walkthroughs.
This collection contains the output of many Archive Team projects, both ongoing and completed. Thanks to the generous providing of disk space by the Internet Archive, multi-terabyte datasets can be made available, as well as in use by the Wayback Machine, providing a path back to lost websites and work.
Our collection has grown to the point of having sub-collections for the type of data we acquire. If you are seeking to browse the contents of these collections, the Wayback Machine is the best first stop. Otherwise, you are free to dig into the stacks to see what you may find.
The Archive Team Panic Downloads are full pulldowns of currently extant websites, meant to serve as emergency backups for needed sites that are in danger of closing, or which will be missed dearly if suddenly lost due to hard drive crashes or server failures.
ArchiveBot is an IRC bot designed to automate the archival of smaller websites (e.g. up to a few hundred thousand URLs). You give it a URL to start at, and it grabs all content under that URL, records it in a WARC, and then uploads that WARC to ArchiveTeam servers for eventual injection into the Internet Archive (or other archive sites).
To use ArchiveBot, drop by #archivebot on EFNet. To interact with ArchiveBot, you issue commands by typing it into the channel. Note you will need channel operator permissions in order to issue archiving jobs. The dashboard shows the sites being downloaded currently.
There is a dashboard running for the archivebot process at http://www.archivebot.com.
ArchiveBot's source code can be found at https://github.com/ArchiveTeam/ArchiveBot.
git fetch [<options>] [<repository> [<refspec>…]] git fetch [<options>] <group> git fetch --multiple [<options>] [(<repository> | <group>)…] git fetch --all [<options>]
Fetch branches and/or tags (collectively, "refs") from one or more other repositories, along with the objects necessary to complete their histories. Remote-tracking branches are updated (see the description of <refspec> below for ways to control this behavior).
By default, any tag that points into the histories being fetched is also fetched; the effect is to fetch tags that point at branches that you are interested in. This default behavior can be changed by using the --tags or --no-tags options or by configuring remote.<name>.tagOpt. By using a refspec that fetches tags explicitly, you can fetch tags that do not point into branches you are interested in as well.
git fetch can fetch from either a single named repository or URL, or from several repositories at once if <group> is given and there is a remotes.<group> entry in the configuration file. (See git-config[1]).
When no remote is specified, by default the origin remote will be used,
unless there’s an upstream branch configured for the current branch.
The names of refs that are fetched, together with the object names
they point at, are written to .git/FETCH_HEAD. This information
may be used by scripts or other git commands, such as git-pull[1].
Append ref names and object names of fetched refs to the
existing contents of .git/FETCH_HEAD. Without this
option old data in .git/FETCH_HEAD will be overwritten.
Use an atomic transaction to update local refs. Either all refs are updated, or on error, no refs are updated.
Limit fetching to the specified number of commits from the tip of
each remote branch history. If fetching to a shallow repository
created by git clone with --depth=<depth> option (see
git-clone[1]), deepen or shorten the history to the specified
number of commits. Tags for the deepened commits are not fetched.
Similar to --depth, except it specifies the number of commits from the current shallow boundary instead of from the tip of each remote branch history.
Deepen or shorten the history of a shallow repository to include all reachable commits after <date>.
Deepen or shorten the history of a shallow repository to exclude commits reachable from a specified remote branch or tag. This option can be specified multiple times.
If the source repository is complete, convert a shallow repository to a complete one, removing all the limitations imposed by shallow repositories.
If the source repository is shallow, fetch as much as possible so that the current repository has the same history as the source repository.
By default when fetching from a shallow repository,
git fetch refuses refs that require updating
.git/shallow. This option updates .git/shallow and accept such
refs.
By default, Git will report, to the server, commits reachable from all local refs to find common commits in an attempt to reduce the size of the to-be-received packfile. If specified, Git will only report commits reachable from the given tips. This is useful to speed up fetches when the user knows which local ref is likely to have commits in common with the upstream ref being fetched.
This option may be specified more than once; if so, Git will report commits reachable from any of the given commits.
The argument to this option may be a glob on ref names, a ref, or the (possibly abbreviated) SHA-1 of a commit. Specifying a glob is equivalent to specifying this option multiple times, one for each matching ref name.
See also the fetch.negotiationAlgorithm and push.negotiate
configuration variables documented in git-config[1], and the
--negotiate-only option below.
Do not fetch anything from the server, and instead print the
ancestors of the provided --negotiation-tip=* arguments,
which we have in common with the server.
Internally this is used to implement the push.negotiate option, see
git-config[1].
Show what would be done, without making any changes.
Write the list of remote refs fetched in the FETCH_HEAD
file directly under $GIT_DIR. This is the default.
Passing --no-write-fetch-head from the command line tells
Git not to write the file. Under --dry-run option, the
file is never written.
When git fetch is used with <src>:<dst> refspec it may
refuse to update the local branch as discussed
in the <refspec> part below.
This option overrides that check.
Keep downloaded pack.
Allow several <repository> and <group> arguments to be specified. No <refspec>s may be specified.
Run git maintenance run --auto at the end to perform automatic
repository maintenance if needed. (--[no-]auto-gc is a synonym.)
This is enabled by default.
Write a commit-graph after fetching. This overrides the config
setting fetch.writeCommitGraph.
Modify the configured refspec to place all refs into the
refs/prefetch/ namespace. See the prefetch task in
git-maintenance[1].
Before fetching, remove any remote-tracking references that no
longer exist on the remote. Tags are not subject to pruning
if they are fetched only because of the default tag
auto-following or due to a --tags option. However, if tags
are fetched due to an explicit refspec (either on the command
line or in the remote configuration, for example if the remote
was cloned with the --mirror option), then they are also
subject to pruning. Supplying --prune-tags is a shorthand for
providing the tag refspec.
See the PRUNING section below for more details.
Before fetching, remove any local tags that no longer exist on
the remote if --prune is enabled. This option should be used
more carefully, unlike --prune it will remove any local
references (local tags) that have been created. This option is
a shorthand for providing the explicit tag refspec along with
--prune, see the discussion about that in its documentation.
See the PRUNING section below for more details.
By default, tags that point at objects that are downloaded from the remote repository are fetched and stored locally. This option disables this automatic tag following. The default behavior for a remote may be specified with the remote.<name>.tagOpt setting. See git-config[1].
When fetching refs listed on the command line, use the
specified refspec (can be given more than once) to map the
refs to remote-tracking branches, instead of the values of
remote.*.fetch configuration variables for the remote
repository. Providing an empty <refspec> to the
--refmap option causes Git to ignore the configured
refspecs and rely entirely on the refspecs supplied as
command-line arguments. See section on『Configured Remote-tracking
Branches』for details.
Fetch all tags from the remote (i.e., fetch remote tags
refs/tags/* into local tags with the same name), in addition
to whatever else would otherwise be fetched. Using this
option alone does not subject tags to pruning, even if --prune
is used (though tags may be pruned anyway if they are also the
destination of an explicit refspec; see --prune).
This option controls if and under what conditions new commits of
populated submodules should be fetched too. It can be used as a
boolean option to completely disable recursion when set to no or to
unconditionally recurse into all populated submodules when set to
yes, which is the default when this option is used without any
value. Use on-demand to only recurse into a populated submodule
when the superproject retrieves a commit that updates the submodule’s
reference to a commit that isn’t already in the local submodule
clone. By default, on-demand is used, unless
fetch.recurseSubmodules is set (see git-config[1]).
Number of parallel children to be used for all forms of fetching.
If the --multiple option was specified, the different remotes will be fetched
in parallel. If multiple submodules are fetched, they will be fetched in
parallel. To control them independently, use the config settings
fetch.parallel and submodule.fetchJobs (see git-config[1]).
Typically, parallel recursive and multi-remote fetches will be faster. By default fetches are performed sequentially, not in parallel.
Disable recursive fetching of submodules (this has the same effect as
using the --recurse-submodules=no option).
If the remote is fetched successfully, add upstream
(tracking) reference, used by argument-less
git-pull[1] and other commands. For more information,
see branch.<name>.merge and branch.<name>.remoteingit-config[1].
Prepend <path> to paths printed in informative messages such as "Fetching submodule foo". This option is used internally when recursing over submodules.
This option is used internally to temporarily provide a non-negative default value for the --recurse-submodules option. All other methods of configuring fetch’s submodule recursion (such as settings in gitmodules[5] and git-config[1]) override this option, as does specifying --[no-]recurse-submodules directly.
By default git fetch refuses to update the head which corresponds to the current branch. This flag disables the check. This is purely for the internal use for git pull to communicate with git fetch, and unless you are implementing your own Porcelain you are not supposed to use it.
When given, and the repository to fetch from is handled
by git fetch-pack, --exec=<upload-pack> is passed to
the command to specify non-default path for the command
run on the other end.
Pass --quiet to git-fetch-pack and silence any other internally used git commands. Progress is not reported to the standard error stream.
Be verbose.
Progress status is reported on the standard error stream by default when it is attached to a terminal, unless -q is specified. This flag forces progress status even if the standard error stream is not directed to a terminal.
Transmit the given string to the server when communicating using
protocol version 2. The given string must not contain a NUL or LF
character. The server’s handling of server options, including
unknown ones, is server-specific.
When multiple --server-option=<option> are given, they are all
sent to the other side in the order listed on the command line.
By default, git checks if a branch is force-updated during fetch. This can be disabled through fetch.showForcedUpdates, but the --show-forced-updates option guarantees this check occurs. See git-config[1].
By default, git checks if a branch is force-updated during fetch. Pass --no-show-forced-updates or set fetch.showForcedUpdates to false to skip this check for performance reasons. If used during git-pull the --ff-only option will still check for forced updates before attempting a fast-forward update. See git-config[1].
Use IPv4 addresses only, ignoring IPv6 addresses.
Use IPv6 addresses only, ignoring IPv4 addresses.
The "remote" repository that is the source of a fetch or pull operation. This parameter can be either a URL (see the section GIT URLS below) or the name of a remote (see the section REMOTES below).
A name referring to a list of repositories as the value of remotes.<group> in the configuration file. (See git-config[1]).
Specifies which refs to fetch and which local refs to update.
When no <refspec>s appear on the command line, the refs to fetch
are read from remote.<repository>.fetch variables instead
(see CONFIGURED REMOTE-TRACKING BRANCHES below).
The format of a <refspec> parameter is an optional plus
+, followed by the source <src>, followed
by a colon :, followed by the destination ref <dst>.
The colon can be omitted when <dst> is empty. <src> is
typically a ref, but it can also be a fully spelled hex object
name.
A <refspec> may contain a * in its <src> to indicate a simple pattern
match. Such a refspec functions like a glob that matches any ref with the
same prefix. A pattern <refspec> must have a * in both the <src> and
<dst>. It will map refs to the destination by replacing the * with the
contents matched from the source.
If a refspec is prefixed by ^, it will be interpreted as a negative
refspec. Rather than specifying which refs to fetch or which local refs to
update, such a refspec will instead specify refs to exclude. A ref will be
considered to match if it matches at least one positive refspec, and does
not match any negative refspec. Negative refspecs can be useful to restrict
the scope of a pattern refspec so that it will not include specific refs.
Negative refspecs can themselves be pattern refspecs. However, they may only
contain a <src> and do not specify a <dst>. Fully spelled out hex object
names are also not supported.
tag <tag> means the same as refs/tags/<tag>:refs/tags/<tag>;
it requests fetching everything up to the given tag.
The remote ref that matches <src> is fetched, and if <dst> is not an empty string, an attempt is made to update the local ref that matches it.
Whether that update is allowed without --force depends on the ref
namespace it’s being fetched to, the type of object being fetched, and
whether the update is considered to be a fast-forward. Generally, the
same rules apply for fetching as when pushing, see the <refspec>...
section of git-push[1] for what those are. Exceptions to those
rules particular to git fetch are noted below.
Until Git version 2.20, and unlike when pushing with
git-push[1], any updates to refs/tags/* would be accepted
without + in the refspec (or--force). When fetching, we promiscuously
considered all tag updates from a remote to be forced fetches. Since
Git version 2.20, fetching to update refs/tags/* works the same way
as when pushing. I.e. any updates will be rejected without + in the
refspec (or--force).
Unlike when pushing with git-push[1], any updates outside of
refs/{tags,heads}/* will be accepted without + in the refspec (or--force), whether that’s swapping e.g. a tree object for a blob, or
a commit for another commit that’s doesn’t have the previous commit as
an ancestor etc.
Unlike when pushing with git-push[1], there is no
configuration which’ll amend these rules, and nothing like a
pre-fetch hook analogous to the pre-receive hook.
As with pushing with git-push[1], all of the rules described
above about what’s not allowed as an update can be overridden by
adding an the optional leading + to a refspec (or using --force
command line option). The only exception to this is that no amount of
forcing will make the refs/heads/* namespace accept a non-commit
object.
|
Note
|
When the remote branch you want to fetch is known to
be rewound and rebased regularly, it is expected that
its new tip will not be descendant of its previous tip
(as stored in your remote-tracking branch the last time
you fetched). You would want
to use the + sign to indicate non-fast-forward updates
will be needed for such branches. There is no way to
determine or declare that a branch will be made available
in a repository with this behavior; the pulling user simply
must know this is the expected usage pattern for a branch.
|
Read refspecs, one per line, from stdin in addition to those provided as arguments. The "tag <name>" format is not supported.
In general, URLs contain information about the transport protocol, the address of the remote server, and the path to the repository. Depending on the transport protocol, some of this information may be absent.
Git supports ssh, git, http, and https protocols (in addition, ftp, and ftps can be used for fetching, but this is inefficient and deprecated; do not use it).
The native transport (i.e. git:// URL) does no authentication and should be used with caution on unsecured networks.
The following syntaxes may be used with them:
ssh://[user@]host.xz[:port]/path/to/repo.git/
git://host.xz[:port]/path/to/repo.git/
http[s]://host.xz[:port]/path/to/repo.git/
ftp[s]://host.xz[:port]/path/to/repo.git/
An alternative scp-like syntax may also be used with the ssh protocol:
[user@]host.xz:path/to/repo.git/
This syntax is only recognized if there are no slashes before the
first colon. This helps differentiate a local path that contains a
colon. For example the local path foo:bar could be specified as an
absolute path or ./foo:bar to avoid being misinterpreted as an ssh
url.
The ssh and git protocols additionally support ~username expansion:
ssh://[user@]host.xz[:port]/~[user]/path/to/repo.git/
git://host.xz[:port]/~[user]/path/to/repo.git/
[user@]host.xz:/~[user]/path/to/repo.git/
For local repositories, also supported by Git natively, the following syntaxes may be used:
/path/to/repo.git/
file:///path/to/repo.git/
These two syntaxes are mostly equivalent, except when cloning, when the former implies --local option. See git-clone[1] for details.
git clone, git fetch and git pull, but not git push, will also accept a suitable bundle file. See git-bundle[1].
When Git doesn’t know how to handle a certain transport protocol, it attempts to use the remote-<transport> remote helper, if one exists. To explicitly request a remote helper, the following syntax may be used:
<transport>::<address>
where <address> may be a path, a server and path, or an arbitrary URL-like string recognized by the specific remote helper being invoked. See gitremote-helpers[7] for details.
If there are a large number of similarly-named remote repositories and you want to use a different format for them (such that the URLs you use will be rewritten into URLs that work), you can create a configuration section of the form:
[url "<actual url base>"] insteadOf = <other url base>
For example, with this:
[url "git://git.host.xz/"] insteadOf = host.xz:/path/to/ insteadOf = work:
a URL like "work:repo.git" or like "host.xz:/path/to/repo.git" will be rewritten in any context that takes a URL to be "git://git.host.xz/repo.git".
If you want to rewrite URLs for push only, you can create a configuration section of the form:
[url "<actual url base>"] pushInsteadOf = <other url base>
For example, with this:
[url "ssh://example.org/"] pushInsteadOf = git://example.org/
a URL like "git://example.org/path/to/repo.git" will be rewritten to "ssh://example.org/path/to/repo.git" for pushes, but pulls will still use the original URL.
The name of one of the following can be used instead
of a URL as <repository> argument:
a remote in the Git configuration file: $GIT_DIR/config,
a file in the $GIT_DIR/remotes directory, or
a file in the $GIT_DIR/branches directory.
All of these also allow you to omit the refspec from the command line because they each contain a refspec which git will use by default.
You can choose to provide the name of a remote which you had previously
configured using git-remote[1], git-config[1]
or even by a manual edit to the $GIT_DIR/config file. The URL of
this remote will be used to access the repository. The refspec
of this remote will be used by default when you do
not provide a refspec on the command line. The entry in the
config file would appear like this:
[remote "<name>"] url = <url> pushurl = <pushurl> push = <refspec> fetch = <refspec>
The <pushurl> is used for pushes only. It is optional and defaults
to <url>.
You can choose to provide the name of a
file in $GIT_DIR/remotes. The URL
in this file will be used to access the repository. The refspec
in this file will be used as default when you do not
provide a refspec on the command line. This file should have the
following format:
URL: one of the above URL format Push: <refspec> Pull: <refspec>
Push: lines are used by git push and
Pull: lines are used by git pull and git fetch.
Multiple Push: and Pull: lines may
be specified for additional branch mappings.
You can choose to provide the name of a
file in $GIT_DIR/branches.
The URL in this file will be used to access the repository.
This file should have the following format:
<url>#<head>
<url> is required; #<head> is optional.
Depending on the operation, git will use one of the following
refspecs, if you don’t provide one on the command line.
<branch> is the name of this file in $GIT_DIR/branches and
<head> defaults to master.
git fetch uses:
refs/heads/<head>:refs/heads/<branch>
git push uses:
HEAD:refs/heads/<head>
You often interact with the same remote repository by
regularly and repeatedly fetching from it. In order to keep track
of the progress of such a remote repository, git fetch allows you
to configure remote.<repository>.fetch configuration variables.
Typically such a variable may look like this:
[remote "origin"] fetch = +refs/heads/*:refs/remotes/origin/*
This configuration is used in two ways:
When git fetch is run without specifying what branches
and/or tags to fetch on the command line, e.g. git fetch originorgit fetch, remote.<repository>.fetch values are used as
the refspecs—they specify which refs to fetch and which local refs
to update. The example above will fetch
all branches that exist in the origin (i.e. any ref that matches
the left-hand side of the value, refs/heads/*) and update the
corresponding remote-tracking branches in the refs/remotes/origin/*
hierarchy.
When git fetch is run with explicit branches and/or tags
to fetch on the command line, e.g. git fetch origin master, the
<refspec>s given on the command line determine what are to be
fetched (e.g. master in the example,
which is a short-hand for master:, which in turn means
"fetch the master branch but I do not explicitly say what
remote-tracking branch to update with it from the command line"),
and the example command will
fetch only the master branch. The remote.<repository>.fetch
values determine which
remote-tracking branch, if any, is updated. When used in this
way, the remote.<repository>.fetch values do not have any
effect in deciding what gets fetched (i.e. the values are not
used as refspecs when the command-line lists refspecs); they are
only used to decide where the refs that are fetched are stored
by acting as a mapping.
The latter use of the remote.<repository>.fetch values can be
overridden by giving the --refmap=<refspec> parameter(s) on the
command line.
Git has a default disposition of keeping data unless it’s explicitly thrown away; this extends to holding onto local references to branches on remotes that have themselves deleted those branches.
If left to accumulate, these stale references might make performance
worse on big and busy repos that have a lot of branch churn, and
e.g. make the output of commands like git branch -a --contains
<commit> needlessly verbose, as well as impacting anything else
that’ll work with the complete set of known references.
These remote-tracking references can be deleted as a one-off with either of:
# While fetching $ git fetch --prune <name> # Only prune, don't fetch $ git remote prune <name>
To prune references as part of your normal workflow without needing to
remember to run that, set fetch.prune globally, or
remote.<name>.prune per-remote in the config. See
git-config[1].
Here’s where things get tricky and more specific. The pruning feature
doesn’t actually care about branches, instead it’ll prune local ←→
remote-references as a function of the refspec of the remote (see
<refspec> and CONFIGURED REMOTE-TRACKING BRANCHES above).
Therefore if the refspec for the remote includes
e.g. refs/tags/*:refs/tags/*, or you manually run e.g. git fetch
--prune <name> "refs/tags/*:refs/tags/*" it won’t be stale remote
tracking branches that are deleted, but any local tag that doesn’t
exist on the remote.
This might not be what you expect, i.e. you want to prune remote
<name>, but also explicitly fetch tags from it, so when you fetch
from it you delete all your local tags, most of which may not have
come from the <name> remote in the first place.
So be careful when using this with a refspec like
refs/tags/*:refs/tags/*, or any other refspec which might map
references from multiple remotes to the same local namespace.
Since keeping up-to-date with both branches and tags on the remote is
a common use-case the --prune-tags option can be supplied along with
--prune to prune local tags that don’t exist on the remote, and
force-update those tags that differ. Tag pruning can also be enabled
with fetch.pruneTagsorremote.<name>.pruneTags in the config. See
git-config[1].
The --prune-tags option is equivalent to having
refs/tags/*:refs/tags/* declared in the refspecs of the remote. This
can lead to some seemingly strange interactions:
# These both fetch tags $ git fetch --no-tags origin 'refs/tags/*:refs/tags/*' $ git fetch --no-tags --prune-tags origin
The reason it doesn’t error out when provided without --prune or its
config versions is for flexibility of the configured versions, and to
maintain a 1=1 mapping between what the command line flags do, and
what the configuration versions do.
It’s reasonable to e.g. configure fetch.pruneTags=truein~/.gitconfig to have tags pruned whenever git fetch --prune is
run, without making every invocation of git fetch without --prune
an error.
Pruning tags with --prune-tags also works when fetching a URL
instead of a named remote. These will all prune tags not found on
origin:
$ git fetch origin --prune --prune-tags $ git fetch origin --prune 'refs/tags/*:refs/tags/*' $ git fetch <url of origin> --prune --prune-tags $ git fetch <url of origin> --prune 'refs/tags/*:refs/tags/*'
The output of "git fetch" depends on the transport method used; this section describes the output when fetching over the Git protocol (either locally or via ssh) and Smart HTTP protocol.
The status of the fetch is output in tabular form, with each line representing the status of a single ref. Each line is of the form:
<flag> <summary> <from> -> <to> [<reason>]
The status of up-to-date refs is shown only if the --verbose option is used.
In compact output mode, specified with configuration variable
fetch.output, if either entire <from>or<to> is found in the
other string, it will be substituted with * in the other string. For
example, master -> origin/master becomes master -> origin/*.
A single character indicating the status of the ref:
for a successfully fetched fast-forward;
+ for a successful forced update;
- for a successfully pruned ref;
t for a successful tag update;
* for a successfully fetched new ref;
! for a ref that was rejected or failed to update; and
= for a ref that was up to date and did not need fetching.
For a successfully fetched ref, the summary shows the old and new
values of the ref in a form suitable for using as an argument to
git log (this is <old>..<new> in most cases, and
<old>...<new> for forced non-fast-forward updates).
The name of the remote ref being fetched from, minus its
refs/<type>/ prefix. In the case of deletion, the name of
the remote ref is "(none)".
The name of the local ref being updated, minus its
refs/<type>/ prefix.
A human-readable explanation. In the case of successfully fetched refs, no explanation is needed. For a failed ref, the reason for failure is described.
Update the remote-tracking branches:
$ git fetch origin
The above command copies all branches from the remote refs/heads/ namespace and stores them to the local refs/remotes/origin/ namespace, unless the branch.<name>.fetch option is used to specify a non-default refspec.
Using refspecs explicitly:
$ git fetch origin +seen:seen maint:tmp
This updates (or creates, as necessary) branches seen and tmp in
the local repository by fetching from the branches (respectively)
seen and maint from the remote repository.
The seen branch will be updated even if it does not fast-forward,
because it is prefixed with a plus sign; tmp will not be.
Peek at a remote’s branch, without configuring the remote in your local repository:
$ git fetch git://git.kernel.org/pub/scm/git/git.git maint $ git log FETCH_HEAD
The first command fetches the maint branch from the repository at
git://git.kernel.org/pub/scm/git/git.git and the second command uses
FETCH_HEAD to examine the branch with git-log[1]. The fetched
objects will eventually be removed by git’s built-in housekeeping (see
git-gc[1]).
The fetch and push protocols are not designed to prevent one side from stealing data from the other repository that was not intended to be shared. If you have private data that you need to protect from a malicious peer, your best option is to store it in another repository. This applies to both clients and servers. In particular, namespaces on a server are not effective for read access control; you should only grant read access to a namespace to clients that you would trust with read access to the entire repository.
The known attack vectors are as follows:
The victim sends "have" lines advertising the IDs of objects it has that are not explicitly intended to be shared but can be used to optimize the transfer if the peer also has them. The attacker chooses an object ID X to steal and sends a ref to X, but isn’t required to send the content of X because the victim already has it. Now the victim believes that the attacker has X, and it sends the content of X back to the attacker later. (This attack is most straightforward for a client to perform on a server, by creating a ref to X in the namespace the client has access to and then fetching it. The most likely way for a server to perform it on a client is to "merge" X into a public branch and hope that the user does additional work on this branch and pushes it back to the server without noticing the merge.)
As in #1, the attacker chooses an object ID X to steal. The victim sends an object Y that the attacker already has, and the attacker falsely claims to have X and not Y, so the victim sends Y as a delta against X. The delta reveals regions of X that are similar to Y to the attacker.
Using --recurse-submodules can only fetch new commits in already checked out submodules right now. When e.g. upstream added a new submodule in the just fetched commits of the superproject the submodule itself cannot be fetched, making it impossible to check out that submodule later without having to do a fetch again. This is expected to be fixed in a future Git version.
Part of the git[1] suite