Home  

Random  

Nearby  



Log in  



Settings  



Donate  



About Wikipedia  

Disclaimers  



Wikipedia





Brine pool: Difference between revisions





Article  

Talk  



Language  

Watch  

View history  

Edit  






Browse history interactively
 Previous edit
Content deleted Content added
VisualWikitext
m Grammar and links
OAbot (talk | contribs)
425,242 edits
m Open access bot: hdl updated in citation with #oabot.
 
Line 179:
In some brine pools, high water temperatures and hydrostatic pressures result in [[Piezophile|piezophilic]] microorganisms that synthesize thermoprotective molecules (e.g. [[Hydroxy ketone|hydroxyketone]]) to prevent the [[Denaturation (biochemistry)|denaturation]] of proteins and decrease the risk of desiccation.<ref>{{Cite journal |last1=Tanne |first1=Christoph |last2=Golovina |first2=Elena A. |last3=Hoekstra |first3=Folkert A. |last4=Meffert |first4=Andrea |last5=Galinski |first5=Erwin A. |date=2014-04-04 |title=Glass-forming property of hydroxyectoine is the cause of its superior function as a desiccation protectant |journal=Frontiers in Microbiology |volume=5 |page=150 |doi=10.3389/fmicb.2014.00150 |pmid=24772110 |pmc=3983491 |issn=1664-302X|doi-access=free }}</ref><ref>{{Cite journal |last1=Kamanda Ngugi |first1=David |last2=Blom |first2=Jochen |last3=Alam |first3=Intikhab |last4=Rashid |first4=Mamoon |last5=Ba-Alawi |first5=Wail |last6=Zhang |first6=Guishan |last7=Hikmawan |first7=Tyas |last8=Guan |first8=Yue |last9=Antunes |first9=Andre |last10=Siam |first10=Rania |last11=El Dorry |first11=Hamza |date=2014-08-08 |title=Comparative genomics reveals adaptations of a halotolerant thaumarchaeon in the interfaces of brine pools in the Red Sea |url=http://dx.doi.org/10.1038/ismej.2014.137 |journal=The ISME Journal |volume=9 |issue=2 |pages=396–411 |doi=10.1038/ismej.2014.137 |pmid=25105904 |pmc=4303633 |issn=1751-7362}}</ref><ref>{{Cite journal |last1=Ngugi |first1=David Kamanda |last2=Blom |first2=Jochen |last3=Stepanauskas |first3=Ramunas |last4=Stingl |first4=Ulrich |date=2015-12-11 |title=Diversification and niche adaptations of Nitrospina-like bacteria in the polyextreme interfaces of Red Sea brines |url=http://dx.doi.org/10.1038/ismej.2015.214 |journal=The ISME Journal |volume=10 |issue=6 |pages=1383–1399 |doi=10.1038/ismej.2015.214 |pmid=26657763 |pmc=5029188 |issn=1751-7362}}</ref><ref>{{Cite journal |last1=Kato |first1=C. |last2=Qureshi |first2=M. |date=1999 |title=Pressure response in deep-sea piezophilic bacteria. |journal=Journal of Molecular Microbiology and Biotechnology|volume=1 |issue=1 |pages=87–92 |doi=10.1023/A:1008989800098 |pmid=10941789 |s2cid=32898991 }}</ref>
 
Another important adaptation is the use of alternative electron acceptors to yield energy, such as [[iron]], [[manganese]],<ref>{{Cite journal |last1=Van Cappellen |first1=Philippe |last2=Viollier |first2=Eric |last3=Roychoudhury |first3=Alakendra |last4=Clark |first4=Lauren |last5=Ingall |first5=Ellery |last6=Lowe |first6=Kristine |last7=Dichristina |first7=Thomas |date=1998-08-21 |title=Biogeochemical Cycles of Manganese and Iron at the Oxic−Anoxic Transition of a Stratified Marine Basin (Orca Basin, Gulf of Mexico) |url=http://dx.doi.org/10.1021/es980307m |journal=Environmental Science & Technology |volume=32 |issue=19 |pages=2931–2939 |doi=10.1021/es980307m |bibcode=1998EnST...32.2931V |issn=0013-936X}}</ref> [[sulfate]], [[Sulfur|elemental sulfur]],<ref>{{Cite journal |last1=Guan |first1=Yue |last2=Hikmawan |first2=Tyas |last3=Antunes |first3=André |last4=Ngugi |first4=David |last5=Stingl |first5=Ulrich |date=2015 |title=Diversity of methanogens and sulfate-reducing bacteria in the interfaces of five deep-sea anoxic brines of the Red Sea |url=http://dx.doi.org/10.1016/j.resmic.2015.07.002 |journal=Research in Microbiology |volume=166 |issue=9 |pages=688–699 |doi=10.1016/j.resmic.2015.07.002 |pmid=26192212 |issn=0923-2508|hdl=10754/594182 |hdl-access=free }}</ref> [[carbon dioxide]], [[nitrite]], and [[nitrate]].<ref>{{Cite journal |last1=Borin |first1=Sara |last2=Mapelli |first2=Francesca |last3=Rolli |first3=Eleonora |last4=Song |first4=Bongkeun |last5=Tobias |first5=Craig |last6=Schmid |first6=Markus C. |last7=De Lange |first7=Gert J. |last8=Reichart |first8=Gert J. |last9=Schouten |first9=Stefan |last10=Jetten |first10=Mike |last11=Daffonchio |first11=Daniele |date=2013-01-23 |title=Anammox bacterial populations in deep marine hypersaline gradient systems |url=http://dx.doi.org/10.1007/s00792-013-0516-x |journal=Extremophiles |volume=17 |issue=2 |pages=289–299 |doi=10.1007/s00792-013-0516-x |pmid=23340764 |s2cid=12353717 |issn=1431-0651|hdl=2066/111535 |hdl-access=free }}</ref>
 
Animals have also been found living in these [[Anaerobic environment|anaerobic]] brine pools, such as the first known metazoan from these environments described by Danovaro et al. (2010).<ref>{{Cite book |last=Reinhardt |first=Danovaro, Roberto Dell'Anno, Antonio Pusceddu, Antonio Gambi, Cristina Heiner, Iben Møbjerg Kristensen |url=http://worldcat.org/oclc/808847572 |title=The first metazoa living in permanently anoxic conditions |date=2010-04-06 |publisher=BioMed Central Ltd |oclc=808847572}}</ref> Many other taxa that from these extreme environments are still uncharacterized.<ref>{{Cite journal |last1=Neves |first1=Ricardo Cardoso |last2=Gambi |first2=Cristina |last3=Danovaro |first3=Roberto |last4=Kristensen |first4=Reinhardt Møbjerg |date=2014-08-08 |title=Spinoloricus cinziae (Phylum Loricifera), a new species from a hypersaline anoxic deep basin in the Mediterranean Sea |url=http://dx.doi.org/10.1080/14772000.2014.943820 |journal=Systematics and Biodiversity |volume=12 |issue=4 |pages=489–502 |doi=10.1080/14772000.2014.943820 |s2cid=84682701 |issn=1477-2000}}</ref><ref>{{Cite journal |last1=Danovaro |first1=Roberto |last2=Gambi |first2=Cristina |last3=Dell’Anno |first3=Antonio |last4=Corinaldesi |first4=Cinzia |last5=Pusceddu |first5=Antonio |last6=Neves |first6=Ricardo Cardoso |last7=Kristensen |first7=Reinhardt Møbjerg |date=2016-06-07 |title=The challenge of proving the existence of metazoan life in permanently anoxic deep-sea sediments |journal=BMC Biology |volume=14 |issue=1 |page=43 |doi=10.1186/s12915-016-0263-4 |pmid=27267928 |pmc=4895820 |issn=1741-7007 |doi-access=free }}</ref>
Line 187:
 
==== Chemical composition and metabolic significance ====
As the name suggests, brine pools, or deep hypersaline anoxic basins (DHABs), are characterized by a very high salt concentration and anoxic conditions. [[Sodium]], [[chloride]], [[magnesium]], [[potassium]], and [[calcium]] ion concentrations are all extremely high in brine pools. Due to low mixing rates between the above seawater and the brine water, brine-pool water becomes anoxic within the first ten centimeters or so.<ref name="Merlino-2018">{{Cite journal |last1=Merlino |first1=Giuseppe |last2=Barozzi |first2=Alan |last3=Michoud |first3=Grégoire |last4=Ngugi |first4=David Kamanda |last5=Daffonchio |first5=Daniele |date=2018-07-01 |title=Microbial ecology of deep-sea hypersaline anoxic basins |journal=FEMS Microbiology Ecology |volume=94 |issue=7 |pages=fiy085 |doi=10.1093/femsec/fiy085 |pmid=29905791 |issn=0168-6496|doi-access=free |hdl=10754/627936 |hdl-access=free }}</ref> While there are large variations in the [[Geochemistry|geochemical]] composition of individual pools,<ref name="Merlino-2018" /> as well as extreme chemical [[Ocean stratification|stratification]] within the same pool,<ref name="Bougouffa-2013-2">{{Cite journal |last1=Bougouffa |first1=S. |last2=Yang |first2=J. K. |last3=Lee |first3=O. O. |last4=Wang |first4=Y. |last5=Batang |first5=Z. |last6=Al-Suwailem |first6=A. |last7=Qian |first7=P. Y. |date=May 2013 |title=Distinctive Microbial Community Structure in Highly Stratified Deep-Sea Brine Water Columns |journal=Applied and Environmental Microbiology |language=en |volume=79 |issue=11 |pages=3425–3437 |bibcode=2013ApEnM..79.3425B |doi=10.1128/AEM.00254-13 |issn=0099-2240 |pmc=3648036 |pmid=23542623}}</ref> conserved chemical trends are present. Deeper layers of DHABs will be saltier, hotter, more acidic, and more anaerobic than the preceding layers.<ref>{{Cite journal |last1=Anschutz |first1=Pierre |last2=Blanc |first2=Gérard |date=1996-07-01 |title=Heat and salt fluxes in the Atlantis II Deep (Red Sea) |url=https://dx.doi.org/10.1016/0012-821X%2896%2900098-2 |journal=Earth and Planetary Science Letters |language=en |volume=142 |issue=1 |pages=147–159 |doi=10.1016/0012-821X(96)00098-2 |bibcode=1996E&PSL.142..147A |issn=0012-821X}}</ref><ref>{{Cite journal |last1=De Lange |first1=G. J |last2=Middelburg |first2=J. J |last3=Van der Weijden |first3=C. H |last4=Catalano |first4=G |last5=Luther |first5=G. W |last6=Hydes |first6=D. J |last7=Woittiez |first7=J. R. W |last8=Klinkhammer |first8=G. P |date=1990-12-10 |title=Composition of anoxic hypersaline brines in the Tyro and Bannock Basins, eastern Mediterranean |url=https://dx.doi.org/10.1016/0304-4203%2890%2990031-7 |journal=Marine Chemistry |series=Anoxic Brines of the Mediterranean Sea |language=en |volume=31 |issue=1 |pages=63–88 |doi=10.1016/0304-4203(90)90031-7 |issn=0304-4203}}</ref> The concentration of [[heavy metals]] (Fe, Mn, Si, Cu) and certain [[nutrient]]s (NO<sub>2</sub><sup>−</sup>, NH<sub>4</sub><sup>+</sup>, NO<sub>3</sub><sup>−</sup>, and PO<sub>4</sub><sup>−</sup>) will tend to increase with depth, while the concentration of SO<sub>4</sub><sup>−</sup> and both organic and inorganic carbon decrease with depth.<ref name="Bougouffa-2013-2" /> While these trends are all observed to some capacity in DHABs, the intensity and distance over which these trends take effect can vary in depth from one meter to tens of meters.<ref name="Merlino-2018" />
 
The heavy stratification within DHABs has led to increased microbial metabolic diversity and varying cell concentrations between layers. The majority of cell biomass has been found at the interfaces between the distinct chemical layers (with the highest concentrations of cells located at the brine-surface interface).<ref name="van der Wielen-2005">{{Cite journal |last1=van der Wielen |first1=Paul W. J. J. |last2=Bolhuis |first2=Henk |last3=Borin |first3=Sara |last4=Daffonchio |first4=Daniele |last5=Corselli |first5=Cesare |last6=Giuliano |first6=Laura |last7=D'Auria |first7=Giuseppe |last8=de Lange |first8=Gert J. |last9=Huebner |first9=Andreas |last10=Varnavas |first10=Sotirios P. |last11=Thomson |first11=John |date=2005-01-07 |title=The Enigma of Prokaryotic Life in Deep Hypersaline Anoxic Basins |url=https://www.science.org/doi/10.1126/science.1103569 |journal=Science |language=en |volume=307 |issue=5706 |pages=121–123 |doi=10.1126/science.1103569 |pmid=15637281 |bibcode=2005Sci...307..121V |s2cid=206507712 |issn=0036-8075}}</ref> Microbes exploit the sharp chemical gradients between the layers to make their metabolisms more thermodynamically favorable.<ref name="Borin-2009">{{Cite journal |last1=Borin |first1=Sara |last2=Brusetti |first2=Lorenzo |last3=Mapelli |first3=Francesca |last4=D'Auria |first4=Giuseppe |last5=Brusa |first5=Tullio |last6=Marzorati |first6=Massimo |last7=Rizzi |first7=Aurora |last8=Yakimov |first8=Michail |last9=Marty |first9=Danielle |last10=De Lange |first10=Gert J. |last11=Van der Wielen |first11=Paul |date=2009-06-09 |title=Sulfur cycling and methanogenesis primarily drive microbial colonization of the highly sulfidic Urania deep hypersaline basin |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=106 |issue=23 |pages=9151–9156 |doi=10.1073/pnas.0811984106 |issn=0027-8424 |pmc=2685740 |pmid=19470485|bibcode=2009PNAS..106.9151B |doi-access=free }}</ref>
Line 204:
 
==== Sulfur cycling ====
Due to the high concentration of [[sulfate]] (especially in the Uranian Basin), sulfate reduction is extremely important in the [[Biogeochemical cycle|biogeochemical cycling]] of DHABs. The highest rates of sulfate reduction tend to be found in the deepest DHAB layers, where [[Reduction potential|redox potential]] is lowest.<ref name="Borin-2009" /> [[Sulfate-reducing microorganism|Sulfate reducing]] bacteria have been found in the brines of Kebrit Deep, Nereus Deep, Erba Deep, [[Atlantis II Deep]], and Discovery Deep.<ref>{{Cite journal |last1=Guan |first1=Yue |last2=Hikmawan |first2=Tyas |last3=Antunes |first3=André |last4=Ngugi |first4=David |last5=Stingl |first5=Ulrich |date=2015-11-01 |title=Diversity of methanogens and sulfate-reducing bacteria in the interfaces of five deep-sea anoxic brines of the Red Sea |url=https://www.sciencedirect.com/science/article/pii/S0923250815001175 |journal=Research in Microbiology |series=Deep Sea Microbiology |language=en |volume=166 |issue=9 |pages=688–699 |doi=10.1016/j.resmic.2015.07.002 |pmid=26192212 |issn=0923-2508|hdl=10754/594182 |hdl-access=free }}</ref> Oxidative sulfur pathways help close the biogeochemical sulfur loops within the DHABs. There are three main sulfur oxidizing pathways which are likely found in DHABs:
 
# sulfur-oxidizing multienzyme complex which can oxidize sulfide or [[thiosulfate]] to sulfate (with elemental [[sulfur]] or [[sulfite]] as an intermediate).
Line 231:
One major idea involves harnessing the salinity of brine pools to use as a power source. This would be done using an osmotic engine which draws the high-salinity top water through the engine and pushes it down due to [[osmotic pressure]]. This would cause the brackish stream (which is less dense and has a lighter salinity) to be propelled away from the engine via buoyancy. The energy created by this exchange can be harnessed using a turbine to create a power output.<ref name="Arias-2019" />
 
It is possible to study liquid brine in order to harness its electrical conductivity to study if liquid water is present on [[Mars]].<ref name="Nazarious-2019">{{Cite journal|date=2019-09-01|title=Calibration and preliminary tests of the Brine Observation Transition To Liquid Experiment on HABIT/ExoMars 2020 for demonstration of liquid water stability on Mars|journal=Acta Astronautica |volume=162 |pages=497–510 |doi=10.1016/j.actaastro.2019.06.026 |issn=0094-5765|last1=Nazarious|first1=Miracle Israel|last2=Ramachandran|first2=Abhilash Vakkada|last3=Zorzano|first3=Maria-Paz|last4=Martin-Torres|first4=Javier|bibcode=2019AcAau.162..497N|doi-access=free|hdl=2164/14224|hdl-access=free}}</ref> A [[Habitability, Brine Irradiation and Temperature|HABIT]] (Habitability: Brines, Irradiation, and Temperature) instrument will be part of a 2020 campaign to monitor changing conditions on Mars. This device will include a BOTTLE (Brine Observation Transition to Liquid Experiment) experiment to quantify the formation of transient liquid brine as well as observe its stability over time under non-equilibrium conditions.<ref name="Nazarious-2019" />
 
A third idea involves using microorganisms in deep-sea brine pools to form natural-product drugs.<ref>{{Cite journal|last1=Li|first1=Dehai|last2=Wang|first2=Fengping|last3=Xiao|first3=Xiang|last4=Zeng|first4=Xiang|last5=Gu|first5=Qian-Qun|last6=Zhu|first6=Weiming|date=May 2007|title=A new cytotoxic phenazine derivative from a deep sea bacterium Bacillus sp|url=https://pubmed.ncbi.nlm.nih.gov/17615672/|journal=Archives of Pharmacal Research|volume=30|issue=5|pages=552–555|doi=10.1007/BF02977647|issn=0253-6269|pmid=17615672|s2cid=10515104}}</ref> These microorganisms are important sources of bioactive molecules against various diseases due to the extreme environment they inhabit, giving potential to an increasing number of drugs in clinical trials.<ref>{{Cite journal|last1=Ziko|first1=Laila|last2=Saqr|first2=Al-Hussein A.|last3=Ouf|first3=Amged|last4=Gimpel|first4=Matthias|last5=Aziz|first5=Ramy K.|last6=Neubauer|first6=Peter|last7=Siam|first7=Rania|date=2019-03-18|title=Antibacterial and anticancer activities of orphan biosynthetic gene clusters from Atlantis II Red Sea brine pool|journal=Microbial Cell Factories|volume=18|issue=1|pages=56|doi=10.1186/s12934-019-1103-3|issn=1475-2859|pmc=6423787|pmid=30885206 |doi-access=free }}</ref> In particular, a novel finding in a study used microorganisms from the [[Red Sea brine pool microbiology|Red Sea brine pools]] as potential anticancer drugs.<ref>{{Cite journal|last=Craig|first=H.|date=1966-12-23|title=Isotopic Composition and Origin of the Red Sea and Salton Sea Geothermal Brines |url=https://www.science.org/doi/10.1126/science.154.3756.1544|journal=Science|language=en|volume=154|issue=3756|pages=1544–1548|doi=10.1126/science.154.3756.1544|issn=0036-8075 |pmid=17807292|bibcode=1966Sci...154.1544C|s2cid=40574864}}</ref><ref>{{Cite journal |last1=Sagar|first1=Sunil|last2=Esau |first2=Luke|last3=Hikmawan|first3=Tyas |last4=Antunes|first4=Andre|last5=Holtermann |first5=Karie |last6=Stingl |first6=Ulrich |last7=Bajic |first7=Vladimir B. |last8=Kaur |first8=Mandeep |date=2013-02-06 |title=Cytotoxic and apoptotic evaluations of marine bacteria isolated from brine-seawater interface of the Red Sea|journal=BMC Complementary and Alternative Medicine|volume=13|issue=1|pages=29|doi=10.1186/1472-6882-13-29|issn=1472-6882|pmc=3598566|pmid=23388148 |doi-access=free }}</ref><ref>{{Cite journal|last1=Grötzinger|first1=Stefan Wolfgang|last2=Alam|first2=Intikhab|last3=Alawi|first3=Wail Ba|last4=Bajic|first4=Vladimir B.|last5=Stingl|first5=Ulrich|last6=Eppinger|first6=Jörg|date=2014|title=Mining a database of single amplified genomes from Red Sea brine pool extremophiles—improving reliability of gene function prediction using a profile and pattern matching algorithm (PPMA)|journal=Frontiers in Microbiology|language=en|volume=5|page=134|doi=10.3389/fmicb.2014.00134|pmid=24778629|pmc=3985023|issn=1664-302X|doi-access=free}}</ref>

Retrieved from "https://en.wikipedia.org/wiki/Brine_pool"
 




Languages

 



This page is not available in other languages.
 

Wikipedia




Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Terms of Use

Desktop