Home  

Random  

Nearby  



Log in  



Settings  



Donate  



About Wikipedia  

Disclaimers  



Wikipedia





CahnHilliard equation





Article  

Talk  



Language  

Watch  

Edit  





The Cahn–Hilliard equation (after John W. Cahn and John E. Hilliard)[1] is an equationofmathematical physics which describes the process of phase separation, spinodal decomposition, by which the two components of a binary fluid spontaneously separate and form domains pure in each component. If is the concentration of the fluid, with indicating domains, then the equation is written as

where is a diffusion coefficient with units of and gives the length of the transition regions between the domains. Here is the partial time derivative and is the Laplacianin dimensions. Additionally, the quantity is identified as a chemical potential.

Related to it is the Allen–Cahn equation, as well as the stochastic Allen–Cahn and the stochastic Cahn–Hilliard equations.

Features and applications

edit

Of interest to mathematicians is the existence of a unique solution of the Cahn–Hilliard equation, given by smooth initial data. The proof relies essentially on the existence of a Lyapunov functional. Specifically, if we identify

 

as a free energy functional, then

 

so that the free energy does not grow in time. This also indicates segregation into domains is the asymptotic outcome of the evolution of this equation.

In real experiments, the segregation of an initially mixed binary fluid into domains is observed. The segregation is characterized by the following facts.

 
Evolution of random initial data under the Cahn–Hilliard equation with   and   (equal amounts of each phase), demonstrating phase separation.

The Cahn–Hilliard equation finds applications in diverse fields: in complex fluids and soft matter (interfacial fluid flow, polymer science and in industrial applications). The solution of the Cahn–Hilliard equation for a binary mixture demonstrated to coincide well with the solution of a Stefan problem and the model of Thomas and Windle.[2] Of interest to researchers at present is the coupling of the phase separation of the Cahn–Hilliard equation to the Navier–Stokes equations of fluid flow.

See also

edit

Further reading

edit

References

edit
  1. ^ Cahn, John W.; Hilliard, John E. (February 1958). "Free Energy of a Nonuniform System. I. Interfacial Free Energy". The Journal of Chemical Physics. 28 (2): 258–267. Bibcode:1958JChPh..28..258C. doi:10.1063/1.1744102. ISSN 0021-9606.
  • ^ Vermolen, F. J.; Gharasoo, M. G.; Zitha, P. L. J.; Bruining, J. (2009). "Numerical Solutions of Some Diffuse Interface Problems: The Cahn–Hilliard Equation and the Model of Thomas and Windle". International Journal for Multiscale Computational Engineering. 7 (6): 523–543. doi:10.1615/IntJMultCompEng.v7.i6.40.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Cahn–Hilliard_equation&oldid=1224485275"
     



    Last edited on 18 May 2024, at 18:17  





    Languages

     


    Español
    Français

     

    Wikipedia


    This page was last edited on 18 May 2024, at 18:17 (UTC).

    Content is available under CC BY-SA 4.0 unless otherwise noted.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Terms of Use

    Desktop