Home  

Random  

Nearby  



Log in  



Settings  



Donate  



About Wikipedia  

Disclaimers  



Wikipedia





Liquid rocket propellant: Difference between revisions





Article  

Talk  



Language  

Watch  

View history  

Edit  






Browse history interactively
 Previous edit
Content deleted Content added
VisualWikitext
harmonized paragraph appearing in two articles
 
(462 intermediate revisions by more than 100 users not shown)
Line 1:
{{Short description|Liquid form of rocket propellants}}
The highest [[specific impulse]] chemical [[rocket]]s use liquid [[propellant]]s.
{{Main|Liquid-propellant rocket}}
 
The highest [[specific impulse]] chemical rockets use liquid propellants ([[liquid-propellant rocket]]s). They can consist of a single chemical (a '''monopropellant''') or a mix of two chemicals, called [[bipropellants]]. Bipropellants can further be divided into two categories; [[hypergolic propellant]]s, which ignite when the fuel and [[Oxidizing agent|oxidizer]] make contact, and non-hypergolic propellants which require an ignition source.<ref>{{cite book|title=Space Mission Analysis and Design|last1=Larson|first1=W.J.|last2=Wertz|first2=J.R.|date=1992|publisher=Kluver Academic Publishers|location=Boston}}</ref>
The first rockets used [[liquid oxygen]] and [[gasoline]] as propellants. Both are readily available, cheap, high energy, and dense. Oxygen is a moderate cryogen -- air will not liquify against a liquid oxygen tank, so it is possible to store LOX briefly in a rocket without heroic insulation measures. Gasoline has since been replaced by [[RP-1]], a highly refined grade of [[kerosene]]. The combination is so good that to this day it is still used in the first stages of most orbital launchers, as well as the long-range offensive missiles of China and North Korea. The [[Space Shuttle]] uses [[solid rocket]] motors for its first stage.
 
About 170 different [[propellants]] made of [[liquid fuel]] have been tested, excluding minor changes to a specific propellant such as propellant additives, corrosion inhibitors, or stabilizers. In the U.S. alone at least 25 different propellant combinations have been flown.<ref>{{cite journal|last=Sutton|first=G. P.|title=History of liquid propellant rocket engines in the united states|journal=Journal of Propulsion and Power|date=2003|volume=19 |issue=6 |pages=978–1007|doi=10.2514/2.6942}}</ref>
During the 1950s there was a great burst of activity by propellant chemists to find high-energy liquid propellants better suited to the military. Military rockets need to sit in silos for many years, able to launch at a moment's notice. Propellants requiring continuous refrigeration, and which cause their rockets grow ever-thicker blankets of ice, are not practical. As the military is willing to handle and use hazardous materials, a great number of dangerous chemicals were brewed up in large batches, virtually all of which were dead ends.
 
Many factors go into choosing a propellant for a liquid-propellant rocket engine. The primary factors include ease of operation, cost, hazards/environment and performance.{{citation needed|date=March 2017}}
Nitric acid is a particularly good story. The acid itself (HNO<sub>3</sub>) is not stable, and gives off NO<sub>2</sub> fumes (hence the name white fuming nitric acid). Unlike N<sub>2</sub>O fumes, which make people happy, NO<sub>2</sub> makes people die. The addition of large amounts of N<sub>2</sub>O<sub>4</sub> makes the mixture red, but keeps it from changing composition, leaving the problem that nitric acid will eat any container it is placed in, releasing gases that can build up pressure in the process. The breakthrough was the addition of a little hydrofluoric acid (HF), which forms a self-healing metal fluoride on the interior of tank walls and makes ''Inhibited'' Red Fuming Nitric Acid storable. Although the development of military propellants was treated with the greatest secrecy, the trick to inhibiting nitric acid was published in 1954 and Russian rockets with the same fuel appeared shortly afterwards. Eventually the chemists gave up stabilizing HNO<sub>3</sub> with N<sub>2</sub>O<sub>4</sub>, and just used straight N<sub>2</sub>O<sub>4</sub>, which is a slightly better oxidizer anyway. (In the propellant table below, note that N<sub>2</sub>O<sub>4</sub> is always in equilibrium with NO<sub>2</sub>, and so mixtures are sometimes quoted with the latter.)
 
==History==
All the early rocket theorists noted that hydrogen would be an ideal propellant. Hydrogen gas is very bulky, however, and the only practical storage was as a liquid, requiring either immense pressures or extreme cold. Since immense pressure requires heavy tanks, cryogenic storage was pursued, and not mastered in rockets until the 1960s as part of the Apollo and Centaur upper-stage programs. The Space Shuttle uses liquid hydrogen and liquid oxygen for the orbiter's main engines.
 
===Development in early 20th century===
The highest specific impulse chemistry ever test-fired in a rocket engine was lithium, fluorine, and hydrogen (a [[Tripropellant rocket|tripropellant]]), which was measured at 542 seconds (542 lbf·s/lb, 5.32 kN·s/kg) specific impulse with a high-expansion nozzle in a vacuum. The combination is completely impractical: the hydrogen must be kept below -252 °C (just 21 K), while the lithium must be kept above 180 °C (453 K), both lithium and fluorine are extremely corrosive, lithium ignites on contact with air, fluorine ignites on contact with almost everything else, fluorine is very toxic, both lithium and fluorine are expensive and rare, and the rocket exhaust is both ionized (interfering with radio communication with the rocket), and toxic, which leads to questions about the effect on the environment.
[[File:Goddard and Rocket.jpg|thumb|200px|right|[[Robert H. Goddard]] on March 16, 1926, holding the launching frame of the first liquid-fueled rocket]]
 
[[Konstantin Tsiolkovsky]] proposed the use of liquid propellants in 1903, in his article ''Exploration of Outer Space by Means of Rocket Devices.''<ref>Tsiolkovsky, Konstantin E. (1903), "The Exploration of Cosmic Space by Means of Reaction Devices (Исследование мировых пространств реактивными приборами)", The Science Review (in Russian) (5), archived from the original on 19 October 2008, retrieved 22 September 2008</ref><ref>{{Cite book|title=Macmillan encyclopedia of energy|url=https://archive.org/details/macmillanencyclo00zume|url-access=registration|date=2001|publisher=Macmillan Reference USA|isbn=0028650212|editor-last=Zumerchik|editor-first=John|location=New York|oclc=44774933}}</ref>
The common liquid fuel combinations in use today are:
 
On March 16, 1926, [[Robert H. Goddard]] used [[liquid oxygen]] (''LOX'') and [[gasoline]] as [[rocket fuel]]s for his first partially successful [[liquid-propellant rocket]] launch. Both propellants are readily available, cheap and highly energetic. Oxygen is a moderate [[cryogen]] as air will not liquefy against a liquid oxygen tank, so it is possible to store LOX briefly in a rocket without excessive insulation. {{clarify|date=July 2023}}
* LOX and kerosene (RP-1). Used for the lower stages of most Russian and Chinese boosters, and the first stage of the Saturn 5. Very similar to Robert Goddard's first rocket.
 
[[File:Opel RAK liquid-fuel rocket plane Friedrich Sander.jpg|thumb|left|Friedrich Sander, Opel RAK technician August Becker and Opel employee Karl Treber (right to left) with liquid-fuel rocket-plane prototype at Opel Rennbahn in Rüsselsheim]]
* LOX and liquid hydrogen, used in the Space Shuttle and the Centaur upper stages.
 
In Germany, engineers and scientists became enthralled with liquid propulsion, building and testing rockets in the late 1920s within [[Opel RAK]] in Rüsselsheim. According to [[Max Valier]]'s account, Opel RAK rocket designer [[Friedrich Wilhelm Sander]] launched two liquid-fuel rockets at Opel Rennbahn in [[Rüsselsheim]] on April 10 and April 12, 1929. These Opel RAK rockets were the first European, and after Goddard the second liquid-fuel rockets, in history. {{clarify|date=July 2023}}
* Nitrogen tetroxide (N<sub>2</sub>O<sub>4</sub>) and hydrazine (N<sub>2</sub>H<sub>4</sub>). Used in military, orbital and deep space rockets, because both liquids are storable for long periods at reasonable temperatures and pressures. Hydrazine decomposes energetically to nitrogen and hydrogen, making it a fairly good [[monopropellant]] all by itself.
 
===World War II era===
==Propellant table==
Germany had very active rocket development before and during [[World War II]], both for the strategic [[V-2 rocket]] and other missiles. The V-2 used an alcohol/LOX [[liquid-propellant engine]], with [[hydrogen peroxide]] to drive the fuel pumps.<ref name=Clark2018>{{cite book |isbn = 978-0-8135-9918-2 |title = Ignition!: An Informal History of Liquid Rocket Propellants |last1 = Clark |first1 = John Drury |author-link=John Drury Clark |date = 23 May 2018 |publisher = Rutgers University Press |url=https://books.google.com/books?id=BdU4DwAAQBAJ |pages=302}}</ref>{{rp|9}} The alcohol was mixed with water for engine cooling. Both Germany and the United States developed reusable liquid-propellant rocket engines that used a storeable liquid oxidizer with much greater density than LOX and a liquid fuel that [[Hypergolic propellant|ignited spontaneously on contact]] with the high density oxidizer.
 
The major manufacturer of German rocket engines for military use, the [[Hellmuth Walter Kommanditgesellschaft|HWK firm]],<ref>[http://www.walterwerke.co.uk/walter/index.htm British site on the HWK firm]</ref> manufactured the [[Ministry of Aviation (Nazi Germany)|RLM]]-numbered '''109-500'''-designation series of rocket engine systems, and either used [[T-Stoff|hydrogen peroxide]] as a monopropellant for [[Walter HWK 109-500|''Starthilfe'']] rocket-propulsive assisted takeoff needs;<ref>[http://www.walterwerke.co.uk/ato/109500.htm Walter site-page on the ''Starthilfe'' system]</ref> or as a [[Walter HWK 109-507|form of thrust]] for [[Henschel Hs 293|MCLOS-guided air-sea glide bombs]];<ref>[http://www.walterwerke.co.uk/missiles/hs293.htm Wlater site-page on the Henschel air-sea glide bomb]</ref> and used in a bipropellant combination of the same oxidizer with a [[C-Stoff|fuel mixture of hydrazine hydrate and methyl alcohol]] for [[Walter HWK 109-509|rocket engine systems intended for manned combat aircraft propulsion]] purposes.<ref>[http://www.walterwerke.co.uk/walter/motors.htm List of 109-509 series Walter rocket motors]</ref>
<table align="right" width="35%">
<tr><th colspan="2">To approximate Isp at other chamber pressures</th></tr>
<tr>
<th align="center">Pressure</th>
<th align="center">Multiply by</th>
</tr>
<tr><td align="center">1000</td><td align="center">1.00</td></tr>
<tr><td align="center">900</td><td align="center">0.99</td></tr>
<tr><td align="center">800</td><td align="center">0.98</td></tr>
<tr><td align="center">700</td><td align="center">0.97</td></tr>
<tr><td align="center">600</td><td align="center">0.95</td></tr>
<tr><td align="center">500</td><td align="center">0.93</td></tr>
<tr><td align="center">400</td><td align="center">0.91</td></tr>
<tr><td align="center">300</td><td align="center">0.88</td></tr>
</table>
 
The U.S. engine designs were fueled with the bipropellant combination of [[nitric acid]] as the oxidizer; and [[aniline]] as the fuel. Both engines were used to power aircraft, the [[Me 163 Komet]] interceptor in the case of the Walter 509-series German engine designs, and [[RATO]] units from both nations (as with the ''Starthilfe'' system for the Luftwaffe) to assist take-off of aircraft, which comprised the primary purpose for the case of the U.S. liquid-fueled rocket engine technology - much of it coming from the mind of U.S. Navy officer [[Robert Truax]].<ref>{{cite book|last=Braun|first=Wernher von (Estate of)|author-link=Wernher von Braun|author2=Ordway III |author3=Frederick I | others=& David Dooling, Jr.|title=Space Travel: A History|year=1985|publisher=Harper & Row|location=New York|isbn=0-06-181898-4|pages=83, 101|orig-year=1975}}</ref>
JANAF thermochemical data used throughout. Calculations performed by
Rocketdyne, results appear in "Modern Engineering for Design of
Liquid-Propellant Rocket Engines", Huzel and Huang. Units have been
converted to metric. These are best-possible specific impulse calculations.
 
===1950s and 1960s===
Assumptions:
{{unreferenced section|date=March 2017}}
* adiabatic combustion
During the 1950s and 1960s there was a great burst of activity by propellant chemists to find high-energy liquid and solid propellants better suited to the military. Large strategic missiles need to sit in land-based or submarine-based silos for many years, able to launch at a moment's notice. Propellants requiring continuous refrigeration, which cause their rockets to grow ever-thicker blankets of ice, were not practical. As the military was willing to handle and use hazardous materials, a great number of dangerous chemicals were brewed up in large batches, most of which wound up being deemed unsuitable for operational systems. In the case of [[nitric acid]], the acid itself ({{chem|H|N|O|3}}) was unstable, and corroded most metals, making it difficult to store. The addition of a modest amount of [[dinitrogen tetroxide|nitrogen tetroxide]], {{chem|N|2|O|4}}, turned the mixture red and kept it from changing composition, but left the problem that nitric acid corrodes containers it is placed in, releasing gases that can build up pressure in the process. The breakthrough was the addition of a little [[hydrogen fluoride]] (HF), which forms a self-sealing metal fluoride on the interior of tank walls that ''Inhibited'' Red Fuming Nitric Acid. This made "IRFNA" storeable.
* isentropic expansion
* one-dimensional expansion
* shifting equilibrium
 
Propellant combinations based on IRFNA or pure {{chem|N|2|O|4}} as oxidizer and kerosene or [[hypergolic]] (self igniting) [[aniline]], [[hydrazine]] or [[unsymmetrical dimethylhydrazine]] (UDMH) as fuel were then adopted in the United States and the Soviet Union for use in strategic and tactical missiles. The self-igniting storeable liquid bi-propellants have somewhat lower specific impulse than LOX/kerosene but have higher density so a greater mass of propellant can be placed in the same sized tanks. Gasoline was replaced by different [[hydrocarbon]] fuels,<ref name=Clark2018 /> for example [[RP-1]]{{snd}} a highly refined grade of [[kerosene]]. This combination is quite practical for rockets that need not be stored.
Definitions
<table>
<tr><td>r</td><td>Mixture ratio: mass oxidizer / mass fuel</td></tr>
<tr><td>V<sub>e</sub><sub>sp</sub></td><td>Average exhaust velocity, meters/sec. The same measure as specific impulse in different units.</td></tr>
<tr><td>C*</td><td>Characteristic velocity, meters/sec</td></tr>
<tr><td>T<sub>c</sub></td><td>Chamber temperature, C</td></tr>
<tr><td>d</td><td>Bulk density of fuel and oxidizer, g/cm^3</td></tr>
</table>
 
==Kerosene==
<table width="100%" cellpadding="2">
{{unreferenced section|date=December 2017}}
<tr>
The V-2 rockets developed by Nazi Germany used LOX and ethyl alcohol. One of the main advantages of alcohol was its water content, which provided cooling in larger rocket engines. Petroleum-based fuels offered more power than alcohol, but standard gasoline and kerosene left too much soot and combustion by-products that could clog engine plumbing. In addition, they lacked the cooling properties of ethyl alcohol.
<th colspan="2"></th>
 
<th colspan="5" style="border-right:2px solid grey;">Optimum expansion from 1000 psia to 14.7 psia</th>
During the early 1950s, the chemical industry in the US was assigned the task of formulating an improved petroleum-based rocket propellant which would not leave residue behind and also ensure that the engines would remain cool. The result was [[RP-1]], the specifications of which were finalized by 1954. A highly refined form of jet fuel, RP-1 burned much more cleanly than conventional petroleum fuels and also posed less of a danger to ground personnel from explosive vapours. It became the propellant for most of the early American rockets and ballistic missiles such as the Atlas, Titan I, and Thor. The Soviets quickly adopted RP-1 for their R-7 missile, but the majority of Soviet launch vehicles ultimately used storable hypergolic propellants. {{As of|2017}}, it is used in the [[multistage rocket|first stage]]s of many orbital launchers.
<th colspan="5">Optimum expansion from 1000 psia to vacuum (nozzle area ratio = 40)</th>
 
</tr>
==Hydrogen==
<tr>
Many early rocket theorists believed that [[Hydrogen gas|hydrogen]] would be a marvelous propellant, since it gives the highest [[specific impulse]]. It is also considered the cleanest when oxidized with [[oxygen]] because the only by-product is water. Steam reforming of [[natural gas]] is the most common method of producing commercial bulk hydrogen at about 95% of the world production<ref name="Ogden 1999">{{cite journal |last=Ogden |first=J.M. |year=1999 |title=Prospects for building a hydrogen energy infrastructure |journal=[[Annual Review of Energy and the Environment]] |volume=24 |pages=227–279 |doi=10.1146/annurev.energy.24.1.227 |doi-access=}}</ref><ref>{{cite report |title=Hydrogen production: Natural gas reforming |publisher=U.S. [[Department of Energy]] |url=https://energy.gov/eere/fuelcells/hydrogen-production-natural-gas-reforming |access-date=6 April 2017}}</ref> of {{nobr|500 billion m<sup>3</sup>}} in 1998.<ref>{{cite report |last1=Rostrup-Nielsen |first1=Jens R. |last2=Rostrup-Nielsen |first2=Thomas |date=2007-03-23 |df=dmy-all |title=Large-scale Hydrogen Production |page=3 |publisher=[[Haldor Topsøe (company)|Haldor Topsøe]] |url=http://www.topsoe.com/sites/default/files/topsoe_large_scale_hydrogen_produc.pdf |url-status=dead |access-date=2023-07-16 |archive-url=https://web.archive.org/web/20160208011417/http://www.topsoe.com/sites/default/files/topsoe_large_scale_hydrogen_produc.pdf |archive-date=2016-02-08 |quote=The total hydrogen market in 1998 was 390×{{10^|9}}&nbsp;Nm³/y + 110×{{10^|9}}&nbsp;Nm³/y co-production.}}</ref> At high temperatures (700–1100&nbsp;°C) and in the presence of a [[metal]]-based [[catalyst]] ([[nickel]]), steam reacts with methane to yield [[carbon monoxide]] and hydrogen.
<th style="border-bottom:2px solid grey;">Oxidizer</td>
 
<th style="border-bottom:2px solid grey;">Fuel</td>
Hydrogen is very bulky compared to other fuels; it is typically stored as a cryogenic liquid, a technique mastered in the early 1950s as part of the [[Thermonuclear weapon#American developments|hydrogen bomb development program]] at [[Los Alamos National Laboratory|Los Alamos]]. [[Liquid hydrogen]] can be stored and transported without boil-off, by using [[helium]] as a cooling refrigerant, since helium has an even lower boiling point than hydrogen. Hydrogen is lost via venting to the atmosphere only after it is loaded onto a launch vehicle, where there is no refrigeration.<ref>{{cite book |first=Richard |last=Rhodes |author-link=Richard Rhodes |year=1995 |title=Dark Sun: The making of the hydrogen bomb |pages=483–504 |publisher=[[Simon & Schuster]] |place=New York, NY |isbn=978-0-684-82414-7 }}</ref>
<th style="border-bottom:2px solid grey;">V<sub>e</sub></td>
 
<th style="border-bottom:2px solid grey;">r</td>
In the late 1950s and early 1960s it was adopted for hydrogen-fuelled stages such as [[Centaur (rocket stage)|Centaur]] and [[Saturn I|Saturn]] upper stages.{{citation needed|date=March 2017}} Hydrogen has low density even as a liquid, requiring large tanks and pumps; maintaining the necessary extreme cold requires tank insulation. This extra weight reduces the mass fraction of the stage or requires extraordinary measures such as pressure stabilization of the tanks to reduce weight. (Pressure stabilized tanks support most of the loads with internal pressure rather than with solid structures, employing primarily the [[tensile strength]] of the tank material.{{citation needed|date=March 2017}})
<th style="border-bottom:2px solid grey;">T<sub>c</sub></td>
 
<th style="border-bottom:2px solid grey;">d</td>
The Soviet rocket programme, in part due to a lack of technical capability, did not use liquid hydrogen as a propellant until the [[Energia (rocket)|Energia]] core stage in the 1980s.{{citation needed|date=March 2017}}
<th style="border-bottom:2px solid grey; border-right: 2px solid grey;">C*</td>
 
<th style="border-bottom:2px solid grey;">V<sub>e</sub></td>
===Upper stage use===
<th style="border-bottom:2px solid grey;">r</td>
The liquid-rocket engine bipropellant [[liquid oxygen]] and hydrogen offers the highest specific impulse for conventional rockets. This extra performance largely offsets the disadvantage of low density, which requires larger fuel tanks. However, a small increase in specific impulse in an upper stage application can give a significant increase in payload-to-orbit mass.<ref name="Sutton 2010">{{cite book |last1=Sutton |first1=E.P. |last2=Biblarz |first2=O. |year=2010 |title=Rocket Propulsion Elements |edition=8th |publisher=Wiley |location=New York |isbn=9780470080245 |url=https://archive.org/details/Rocket_Propulsion_Elements_8th_Edition_by_Oscar_Biblarz_George_P._Sutton |via=Internet Archive}}</ref>
<th style="border-bottom:2px solid grey;">T<sub>c</sub></td>
 
<th style="border-bottom:2px solid grey;">d</td>
===Comparison to kerosene===
<th style="border-bottom:2px solid grey;">C*</td>
{{unreferenced section|date=March 2017}}
</tr>
Launch pad fires due to spilled kerosene are more damaging than hydrogen fires, for two main reasons:
<tr>
*Kerosene burns about 20% hotter in absolute temperature than hydrogen.
<td style="border-bottom:2px solid grey;" rowspan="10">LOX</td>
*Hydrogen's buoyancy. Since hydrogen is a deep cryogen it boils quickly and rises, due to its very low density as a gas. Even when hydrogen burns, the [[Steam|gaseous {{chem|H|2|O}}]] that is formed has a molecular weight of only 18&nbsp;[[Atomic mass unit|{{sc|amu}}]] compared to 29.9&nbsp;[[Atomic mass unit|{{sc|amu}}]] for air, so it also rises quickly. Spilled kerosene fuel, on the other hand, falls to the ground and if ignited can burn for hours when spilled in large quantities.
<td>H<sub>2</sub></td>
Kerosene fires unavoidably cause extensive heat damage that requires time-consuming repairs and rebuilding. This is most frequently experienced by test stand crews involved with firings of large, unproven rocket engines.
<td align="right" >3816</td>
 
<td align="right" >4.13</td>
Hydrogen-fuelled engines require special design, such as running propellant lines horizontally, so that no "traps" form in the lines, which would cause pipe ruptures due to boiling in confined spaces. (The same caution applies to other cryogens such as liquid oxygen and [[liquid natural gas]] (LNG).) Liquid hydrogen fuel has an excellent safety record and performance that is well above all other practical chemical rocket propellants.
<td align="right" >2740</td>
 
<td align="right" >0.29</td>
==Lithium and fluorine==
<td align="right" style="border-right:2px solid grey;">2416</td>
The highest specific impulse chemistry ever test-fired in a rocket engine was [[lithium]] and [[fluorine]], with hydrogen added to improve the exhaust thermodynamics (all propellants had to be kept in their own tanks, making this a [[tripropellant rocket|tripropellant]]). The combination delivered 542&nbsp;s specific impulse in a vacuum, equivalent to an exhaust velocity of 5320&nbsp;m/s. The impracticality of this chemistry highlights why exotic propellants are not actually used: to make all three components liquids, the hydrogen must be kept below –252&nbsp;°C (just 21&nbsp;K) and the lithium must be kept above 180&nbsp;°C (453&nbsp;K). Lithium and fluorine are both extremely corrosive. Lithium ignites on contact with air and fluorine ignites most fuels on contact, including hydrogen. Fluorine and the hydrogen fluoride (HF) in the exhaust are very toxic, which makes working around the launch pad difficult, damages the environment, and makes getting a [[launch license]] more difficult. Both lithium and fluorine are expensive compared to most rocket propellants. This combination has therefore never flown.<ref>{{cite web |title=Current Evaluation of the Tripropellant Concept |first=Robert |last=Zurawski |date=June 1986 |url=https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19860018652.pdf }}</ref>
<td align="right" >4462</td>
 
<td align="right" >4.83</td>
During the 1950s, the Department of Defense proposed lithium/fluorine as ballistic missile propellants. A 1954 accident at a chemical works that released a cloud of fluorine into the atmosphere convinced them to use LOX/RP-1 instead.
<td align="right" >2978</td>
 
<td align="right" >0.32</td>
==Methane==
<td align="right" >2386</td>
Liquid [[methane]] has a lower specific impulse than liquid hydrogen, but is easier to store due to its higher boiling point and density, as well as its lack of [[hydrogen embrittlement]]. It also leaves less residue in the engines compared to kerosene, which is beneficial for reusability.<ref name=pbt20140219>{{cite news |title=SpaceX propulsion chief elevates crowd in Santa Barbara |url=http://www.pacbiztimes.com/2014/02/19/spacexs-propulsion-chief-elevates-crowd-in-santa-barbara/ |date=2014-02-19 |publisher=Pacific Business Times |access-date=2014-02-22}}</ref><ref name=nsf20140307>{{cite web |last=Belluscio| first=Alejandro G. |title=SpaceX advances drive for Mars rocket via Raptor power |work=NASAspaceflight.com |date=2014-03-07 |url=http://www.nasaspaceflight.com/2014/03/spacex-advances-drive-mars-rocket-raptor-power/ |access-date=2014-03-07}}</ref> In addition, it is expected that its production on Mars will be possible via the [[Sabatier reaction]]. In NASA's [[Mars Design Reference Mission|Mars Design Reference Mission 5.0]] documents (between 2009 and 2012), [[Methane#fuel|liquid methane]]/[[liquid oxygen|LOX]] (methalox) was the chosen propellant mixture for the lander module.
</tr>
 
<tr>
Due to the advantages methane fuel offers, some private space launch providers aimed to develop methane-based launch systems during the 2010s and 2020s. The competition between countries was dubbed the Methalox Race to Orbit, with the [[LandSpace]]'s [[Zhuque-2]] methalox rocket becoming the first to reach orbit.<ref name="nsf-20230712">{{cite web |last=Beil |first=Adrian |url=https://www.nasaspaceflight.com/2023/07/zhuque-2-launch2/ |title=LandSpace claims win in the methane race to orbit via second ZhuQue-2 launch |work=[[NASASpaceFlight]] |date=12 July 2023 |access-date=16 July 2023}}</ref><ref>{{cite web|url=https://www.reuters.com/technology/space/china-beats-rivals-successfully-launch-first-methane-liquid-rocket-2023-07-12/ |title=China beats rivals to successfully launch first methane-liquid rocket |work=Reuters |date=12 July 2023 }}</ref><ref>{{cite web|url=https://everydayastronaut.com/second-flight-zhuque-2-2/ |title=Second Flight {{!}} ZhuQue-2 |website=Everyday Astronaut |date=12 July 2023 |first=Juan |last=I. Morales Volosín }}</ref>
<td align="left" >H<sub>2</sub>-Be 49/51</td>
 
<td align="right" >4498</td>
{{As of|2024|January}}, two methane-fueled rockets have reached orbit. Several others are in development and two orbital launch attempts failed:
<td align="right" >0.87</td>
* [[Zhuque-2]] successfully reached orbit on its second flight on 12 July 2023, becoming the first methane-fueled rocket to do so.<ref>{{Cite web |last=Bell |first=Adrian |date=12 July 2023 |title=LandSpace claims win in the methane race to orbit via second ZhuQue-2 launch |url=https://www.nasaspaceflight.com/2023/07/zhuque-2-launch2/ |access-date=12 July 2023 |website=[[NASASpaceFlight.com]]}}</ref> It had failed to reach orbit on its maiden flight on 14 December 2022. The rocket, developed by [[LandSpace]], uses the [[TQ-12]] engine.
<td align="right" >2558</td>
* [[Vulcan Centaur]] successfully reached orbit on its first try, called Cert-1, on 8 January 2024.<ref>{{Cite web |author1=Josh Dinner |date=2024-01-08 |title=ULA's Vulcan rocket launches private US moon lander, 1st since Apollo, and human remains in debut flight |url=https://www.space.com/ula-vulcan-centaur-first-launch-peregrine-celestis-moon-mission |access-date=2024-01-08 |website=Space.com |language=en}}</ref> The rocket, developed by [[United Launch Alliance]], uses the [[Blue Origin|Blue Origin's]] [[BE-4]] engine, though the second stage uses the hydrolox [[RL10]].
<td align="right" >0.23</td>
* [[Terran 1]] had a failed orbital launch attempt on its maiden flight on 22 March 2023. The rocket, developed by [[Relativity Space]], uses the [[Aeon 1]] engine.
<td align="right" style="border-right:2px solid grey;">2833</td>
* [[SpaceX Starship|Starship]] achieved a [[transatmospheric orbit]] on its [[IFT-3|third flight]] on 14 March 2024,<ref>{{cite web |title=Starship's Third Flight Test |url=https://www.spacex.com/launches/mission/?missionId=starship-flight-3 |access-date=2024-05-07 |website=SpaceX }}</ref> after two failed attempts. The rocket, developed by [[SpaceX]], uses the [[SpaceX Raptor|Raptor]] engine.
<td align="right" >5295</td>
 
<td align="right" >0.91</td>
[[SpaceX]] developed the [[Raptor (rocket engine family)|Raptor]] engine for its Starship super-heavy-lift launch vehicle.<ref name=fg20121120>{{cite web |last=Todd |first=David |title=Musk goes for methane-burning reusable rockets as step to colonise Mars |url=http://www.flightglobal.com/blogs/hyperbola/2012/11/musk-goes-for-methane-burning.html |access-date=2012-11-22 |website=FlightGlobal/Blogs Hyperbola |date=2012-11-20 |quote="We are going to do methane." Musk announced as he described his future plans for reusable launch vehicles including those designed to take astronauts to Mars within 15 years. |url-status=dead |archive-date=2012-11-28 |archive-url=https://web.archive.org/web/20121128070948/http://www.flightglobal.com/blogs/hyperbola/2012/11/musk-goes-for-methane-burning.html }}</ref> It has been used in [[SpaceX Starship flight tests|test flights]] since 2019. SpaceX had previously used only [[RP-1]]/LOX in their engines.
<td align="right" >2589</td>
 
<td align="right" >0.24</td>
Blue Origin developed the BE-4 LOX/LNG engine for their [[New Glenn]] and the United Launch Alliance Vulcan Centaur. The BE-4 will provide 2,400 kN (550,000 lbf) of thrust. Two flight engines had been delivered to ULA by mid 2023.
<td align="right" >2850</td>
 
</tr>
In July 2014, [[Firefly Space Systems]] announced plans to use methane fuel for their small satellite launch vehicle, [[Firefly Space Systems#Firefly Alpha|Firefly Alpha]] with an [[aerospike engine]] design.<ref>{{cite web |title=Firefly α |website=Firefly Space Systems |access-date=5 October 2014 |url=http://www.fireflyspace.com/vehicles/firefly-a |url-status=dead |archive-url=https://web.archive.org/web/20141006064518/http://www.fireflyspace.com/vehicles/firefly-a |archive-date=6 October 2014}}</ref>
<tr>
 
<td align="left" >CH<sub>4</sub></td>
[[European Space Agency|ESA]] is developing a 980kN methalox [[Prometheus (rocket engine)|Prometheus rocket engine]] which was test fired in 2023.<ref name=NSF-2023>[https://www.nasaspaceflight.com/2023/06/themis-prometheus-hot-fire-test/#:~:text=Europe%20has%20just%20completed%20the,demonstrator%20on%20June%2022%2C%202023. ''Themis, Prometheus complete first hot-fire tests in France'']</ref>
<td align="right" >3034</td>
 
<td align="right" >3.21</td>
==Monopropellants==
<td align="right" >3260</td>
{{unreferenced section|date=March 2017}}
<td align="right" >0.82</td>
;[[High-test peroxide]]: High test peroxide is concentrated [[Hydrogen peroxide]], with around 2% to 30% water. It decomposes to steam and oxygen when passed over a catalyst. This was historically used for reaction control systems, due to being easily storable. It is often used to drive [[Turbopump]]s, being used on the [[V2-rocket|V2 rocket]], and modern [[Soyuz (rocket family)|Soyuz]].
<td align="right" style="border-right:2px solid grey;">1857</td>
;[[Hydrazine]]: decomposes energetically to nitrogen, hydrogen, and ammonia (2N<sub>2</sub>H<sub>4</sub> → N<sub>2</sub>+H<sub>2</sub>+2NH<sub>3</sub>) and is the most widely used in space vehicles. (Non-oxidized ammonia decomposition is endothermic and would decrease performance).
<td align="right" >3615</td>
;[[Nitrous oxide]]: decomposes to nitrogen and oxygen.
<td align="right" >3.45</td>
;[[Steam]]: when externally heated gives a reasonably modest I<sub>sp</sub> of up to 190 seconds, depending on material corrosion and thermal limits.
<td align="right" >3290</td>
 
<td align="right" >0.83</td>
==Present use==
<td align="right" >1838</td>
{{As of|June 2024}}, liquid fuel combinations in common use:
</tr>
 
<tr>
;[[Kerosene]] (RP-1) / [[liquid oxygen]] (LOX): Used for the lower stages of the [[Soyuz-2]] boosters, the first stage of [[Atlas V]], and both stages of [[Electron (rocket)|Electron]], [[Falcon 9]], [[Falcon Heavy]], and [[Firefly Alpha]]. Very similar to Robert Goddard's first rocket.
<td align="left" >C<sub>2</sub>H<sub>6</sub></td>
;[[Liquid hydrogen]] (LH) / LOX: Used in the stages of the [[Space Launch System]], [[New Shepard]], [[H-IIB]], [[GSLV]] and [[Centaur (rocket stage)|Centaur]].
<td align="right" >3006</td>
;[[Liquid methane]] (LNG) / LOX: Used in both stages of [[Zhuque-2]], [[SpaceX Starship|Starship]] ([[SpaceX Starship flight tests|doing nearly orbital test flights]]), and the first stage of the [[Vulcan Centaur]].
<td align="right" >2.89</td>
;[[Unsymmetrical dimethylhydrazine]] (UDMH) or [[monomethylhydrazine]] (MMH) / [[dinitrogen tetroxide]] (NTO or {{chem|N|2|O|4}}): Used in three first stages of the Russian [[Proton (rocket)|Proton booster]], Indian [[Vikas engine]] for [[PSLV]] and [[GSLV]] rockets, most Chinese boosters, a number of military, orbital and deep space rockets, as this fuel combination is [[hypergolic]] and storable for long periods at reasonable temperatures and pressures.
<td align="right" >3320</td>
;[[Hydrazine]] ({{Chem|N|2|H|4|}}): Used in deep space missions because it is [[storable propellant|storable]] and hypergolic, and can be used as a monopropellant with a catalyst.
<td align="right" >0.90</td>
;[[Aerozine-50]] (50/50 hydrazine and UDMH): Used in deep space missions because it is [[storable propellant|storable]] and hypergolic, and can be used as a monopropellant with a catalyst.
<td align="right" style="border-right:2px solid grey;">1840</td>
 
<td align="right" >3584</td>
==Table==
<td align="right" >3.10</td>
{| class="wikitable" style="float:right; clear:right; margin-left:1em; text-align:center"
<td align="right" >3351</td>
|+ To approximate ''I''{{sub|sp}} at other chamber pressures{{clarify|date=January 2016}}<!-- this table is not clear under what conditions this stated multiplier would be used. From this pressure? To this pressure? Over a given range of pressure (delta pressure)? If delta P, then does direction matter? -->
<td align="right" >0.91</td>
|-
<td align="right" >1825</td>
! Absolute pressure {{convert|1|psi|kPa atm|order=flip|disp=unit2|abbr=on|lk=on}} ([[Pound-force per square inch|psi]])
</tr>
! Multiply by
<tr>
|-
<td align="left" >C<sub>2</sub>H<sub>4</sub></td>
| {{cvt|1000|psi|kPa atm|order=flip|sigfig=4}}
<td align="right" >3053</td>
| 1.00
<td align="right" >2.38</td>
|-
<td align="right" >3486</td>
| {{cvt|900|psi|kPa atm|order=flip|sigfig=4}}
<td align="right" >0.88</td>
| 0.99
<td align="right" style="border-right:2px solid grey;">1875</td>
|-
<td align="right" >3635</td>
| {{cvt|800|psi|kPa atm|order=flip|sigfig=4}}
<td align="right" >2.59</td>
| 0.98
<td align="right" >3521</td>
|-
<td align="right" >0.89</td>
| {{cvt|700|psi|kPa atm|order=flip|sigfig=4}}
<td align="right" >1855</td>
| 0.97
</tr>
|-
<tr>
| {{cvt|600|psi|kPa atm|order=flip|sigfig=4}}
<td align="left" >RP-1</td>
| 0.95
<td align="right" >2941</td>
|-
<td align="right" >2.58</td>
| {{cvt|500|psi|kPa atm|order=flip|sigfig=4}}
<td align="right" >3403</td>
| 0.93
<td align="right" >1.03</td>
|-
<td align="right" style="border-right:2px solid grey;" >1799</td>
| {{cvt|400|psi|kPa atm|order=flip|sigfig=4}}
<td align="right" >3510</td>
| 0.91
<td align="right" >2.77</td>
|-
<td align="right" >3428</td>
| {{cvt|300|psi|kPa atm|order=flip|sigfig=4}}
<td align="right" >1.03</td>
| 0.88
<td align="right" >1783</td>
|}
</tr>
 
<tr>
The table uses data from the JANNAF thermochemical tables (Joint Army-Navy-NASA-Air Force (JANNAF) Interagency Propulsion Committee) throughout, with best-possible specific impulse calculated by Rocketdyne under the assumptions of [[adiabatic]] combustion, [[isentropic]] expansion, one-dimensional expansion and shifting equilibrium.<ref>Huzel, D. K.; Huang, D. H. (1971), NASA SP-125, "Modern Engineering for Design of Liquid-Propellant Rocket Engines", (2nd ed.), NASA</ref> Some units have been converted to metric, but pressures have not.
<td align="left" >N<sub>2</sub>H<sub>4</sub></td>
 
<td align="right" >3065</td>
===Definitions===
<td align="right" >0.92</td>
;''V''<sub>e</sub>: Average exhaust velocity, m/s. The same measure as specific impulse in different units, numerically equal to specific impulse in N·s/kg.
<td align="right" >3132</td>
;''r'': Mixture ratio: mass oxidizer / mass fuel
<td align="right" >1.07</td>
;''T''<sub>c</sub>: Chamber temperature, °C
<td align="right" style="border-right:2px solid grey;">1892</td>
;''d'': [[Bulk density]] of fuel and oxidizer, g/cm<sup>3</sup>
<td align="right" >3460</td>
;''C*'': Characteristic velocity, m/s. Equal to chamber pressure multiplied by throat area, divided by [[mass flow rate]]. Used to check experimental rocket's combustion efficiency.
<td align="right" >0.98</td>
 
<td align="right" >3146</td>
===Bipropellants===
<td align="right" >1.07</td>
{| class="wikitable" border="1" style="text-align:right;"
<td align="right" >1878</td>
|-
</tr>
! rowspan=3 | Oxidizer
<tr>
! rowspan=3 | Fuel
<td align="left" >B<sub>5</sub>H<sub>9</sub></td>
! rowspan=3 | Comment
<td align="right" >3124</td>
! colspan=10 style="border-right:2px solid grey;" | Optimum expansion from 68.05 atm to{{citation needed|reason=Table values need a source|date=April 2016}}
<td align="right" >2.12</td>
|-
<td align="right" >3834</td>
! colspan=5 style="border-right:2px solid grey;" | 1&nbsp;atm
<td align="right" >0.92</td>
! colspan=5 | 0&nbsp;atm, vacuum <br />(nozzle area ratio, 40:1)
<td align="right" style="border-right:2px solid grey;">1895</td>
|- style="border-bottom:2px solid grey;"
<td align="right" >3758</td>
<td! alignstyle="text-align:right;" | ''V''<sub>2.16e</tdsub>
<td! alignstyle="text-align:right;" >3863</td>| ''r''
<td! alignstyle="text-align:right;" | ''T''<sub>0.92c</tdsub>
<td! alignstyle="text-align:right;" >1894</td>| ''d''
! style="border-right:2px solid grey; text-align:right;" | ''C*''
</tr>
! style="text-align:right;" | ''V''<sub>e</sub>
<tr>
! style="text-align:right;" | ''r''
<td align="left" >B<sub>2</sub>H<sub>6</sub></td>
<td! alignstyle="text-align:right;" | ''T''<sub>3351c</tdsub>
<td! alignstyle="text-align:right;" >1.96</td>| ''d''
<td! alignstyle="text-align:right;" >3489</td>| ''C*''
|-
<td align="right" >0.74</td>
| style="text-align:left;" rowspan=10 | [[LOX]]
<td align="right" style="border-right:2px solid grey;">2041</td>
| style="text-align:left;" | [[liquid hydrogen|{{chem|H|2}}]]
<td align="right" >4016</td>
| style="text-align:left;" |''Hydrolox.'' Common.
<td align="right" >2.06</td>
| 3816
<td align="right" >3563</td>
| 4.13
<td align="right" >0.75</td>
| 2740
<td align="right" >2039</td>
| 0.29
</tr>
| style="border-right:2px solid grey;" | 2416
<tr>
| 4462
<td style="border-bottom:2px solid grey;" align="left" >CH<sub>4</sub>/H<sub>2</sub> 92.6/7.4</td>
| 4.83
<td style="border-bottom:2px solid grey;" align="right" >3126</td>
| 2978
<td style="border-bottom:2px solid grey;" align="right" >3.36</td>
| 0.32
<td style="border-bottom:2px solid grey;" align="right" >3245</td>
| 2386
<td style="border-bottom:2px solid grey;" align="right" >0.71</td>
|-
<td style="border-bottom:2px solid grey;" align="right" style="border-right:2px solid grey;">1920</td>
| style="text-align:left;" | {{chem|H|2|}}:[[beryllium|Be]] 49:51 ||
<td style="border-bottom:2px solid grey;" align="right" >3719</td>
| 4498
<td style="border-bottom:2px solid grey;" align="right" >3.63</td>
| 0.87
<td style="border-bottom:2px solid grey;" align="right" >3287</td>
| 2558
<td style="border-bottom:2px solid grey;" align="right" >0.72</td>
| 0.23
<td style="border-bottom:2px solid grey;" align="right" >1897</td>
| style="border-right:2px solid grey;" | 2833
</tr>
| 5295
<tr>
| 0.91
<td style="border-bottom:2px solid grey;" align="left" >GOX</td>
| 2589
<td style="border-bottom:2px solid grey;" align="left" >GH<sub>2</sub></td>
| 0.24
<td style="border-bottom:2px solid grey;" align="right" >3997</td>
| 2850
<td style="border-bottom:2px solid grey;" align="right" >3.29</td>
|-
<td style="border-bottom:2px solid grey;" align="right" >2576</td>
| style="text-align:left;" | [[methane|{{chem|C|H|4}}]] (methane)
<td style="border-bottom:2px solid grey;" align="left" >-</td>
| style="text-align:left;" | ''[[Methalox]]''. Many [[liquid methane|engines]] under development in the 2010s.
<td style="border-bottom:2px solid grey;" align="right" style="border-right:2px solid grey;">2550</td>
| 3034
<td style="border-bottom:2px solid grey;" align="right" >4485</td>
| 3.21
<td style="border-bottom:2px solid grey;" align="right" >3.92</td>
| 3260
<td style="border-bottom:2px solid grey;" align="right" >2862</td>
| 0.82
<td style="border-bottom:2px solid grey;" align="left" >-</td>
<td| style="border-bottomright:2px solid grey;" align="right"| >2519</td>1857
| 3615
</tr>
| 3.45
<tr>
| 3290
<td style="border-bottom:2px solid grey;" rowspan="9" align="left" >F<sub>2</sub></td>
| 0.83
<td align="left" >H<sub>2</sub></td>
| 1838
<td align="right" >4036</td>
|-
<td align="right" >7.94</td>
| style="text-align:left;" | [[ethane|C<sub>2</sub>H<sub>6</sub>]] ||
<td align="right" >3689</td>
| 3006
<td align="right" >0.46</td>
| 2.89
<td align="right" style="border-right:2px solid grey;">2556</td>
| 3320
<td align="right" >4697</td>
| 0.90
<td align="right" >9.74</td>
| style="border-right:2px solid grey;" | 1840
<td align="right" >3985</td>
| 3584
<td align="right" >0.52</td>
| 3.10
<td align="right" >2530</td>
| 3351
</tr>
| 0.91
<tr>
| 1825
<td align="left" >H<sub>2</sub>-Li 65.2/34.0</td>
|-
<td align="right" >4256</td>
| style="text-align:left;" | [[ethylene|C<sub>2</sub>H<sub>4</sub>]] ||
<td align="right" >0.96</td>
| 3053
<td align="right" >1830</td>
| 2.38
<td align="right" >0.19</td>
| 3486
<td align="right" style="border-right:2px solid grey;">2680</td>
| 0.88
<td ></td>
| style="border-right:2px solid grey;" | 1875
<td ></td>
| 3635
<td ></td>
| 2.59
<td ></td>
| 3521
<td ></td>
| 0.89
</tr>
| 1855
<tr>
|-
<td align="left" >H<sub>2</sub>-Li 60.7/39.3</td>
| style="text-align:left;" | [[RP-1]] (kerosene)
<td ></td>
| style="text-align:left;" | ''Kerolox''. Common.
<td ></td>
| 2941
<td ></td>
| 2.58
<td ></td>
| 3403
<td style="border-right:2px solid grey;"></td>
| 1.03
<td align="right" >5050</td>
| style="border-right:2px solid grey;" | 1799
<td align="right" >1.08</td>
| 3510
<td align="right" >1974</td>
| 2.77
<td align="right" >0.21</td>
| 3428
<td align="right" >2656</td>
| 1.03
</tr>
| 1783
<tr>
|-
<td align="left" >CH<sub>4</sub></td>
| style="text-align:left;" | [[hydrazine|N<sub>2</sub>H<sub>4</sub>]] ||
<td align="right" >3414</td>
| 3065
<td align="right" >4.53</td>
| 0.92
<td align="right" >3918</td>
| 3132
<td align="right" >1.03</td>
| 1.07
<td align="right" style="border-right:2px solid grey;">2068</td>
| style="border-right:2px solid grey;" | 1892
<td align="right" >4075</td>
| 3460
<td align="right" >4.74</td>
| 0.98
<td align="right" >3933</td>
| 3146
<td align="right" >1.04</td>
| 1.07
<td align="right" >2064</td>
| 1878
</tr>
|-
<tr>
<td| alignstyle="text-align:left;" >C| [[pentaborane(9)|B<sub>25</sub>H<sub>69</sub></td>]] ||
| 3124
<td align="right" >3335</td>
| 2.12
<td align="right" >3.68</td>
| 3834
<td align="right" >3914</td>
| 0.92
<td align="right" >1.09</td>
<td align="right"| style="border-right:2px solid grey;">2019</td> | 1895
| 3758
<td align="right" >3987</td>
| 2.16
<td align="right" >3.78</td>
| 3863
<td align="right" >3923</td>
| 0.92
<td align="right" >1.10</td>
| 1894
<td align="right" >2014</td>
|-
</tr>
| style="text-align:left;" | [[diborane|B<sub>2</sub>H<sub>6</sub>]] ||
<tr>
| 3351
<td align="left" >MMH</td>
| 1.96
<td align="right" >3413</td>
| 3489
<td align="right" >2.39</td>
| 0.74
<td align="right" >4074</td>
| style="border-right:2px solid grey;" | 2041
<td align="right" >1.24</td>
| 4016
<td align="right" style="border-right:2px solid grey;">2063</td>
| 2.06
<td align="right" >4071</td>
| 3563
<td align="right" >2.47</td>
| 0.75
<td align="right" >4091</td>
| 2039
<td align="right" >1.24</td>
|- style="border-bottom:2px solid grey;"
<td align="right" >1987</td>
| style="text-align:left;" | CH<sub>4</sub>:H<sub>2</sub> 92.6:7.4
</tr>
|
<tr>
| 3126
<td align="left" >N<sub>2</sub>H<sub>4</sub></td>
| 3.36
<td align="right" >3580</td>
| 3245
<td align="right" >2.32</td>
| 0.71
<td align="right" >4461</td>
| style="border-right:2px solid grey;" | 1920
<td align="right" >1.31</td>
| 3719
<td align="right" style="border-right:2px solid grey;">2219</td>
| 3.63
<td align="right" >4215</td>
| 3287
<td align="right" >2.37</td>
| 0.72
<td align="right" >4468</td>
| 1897
<td align="right" >1.31</td>
|- style="border-bottom:2px solid grey;"
<td align="right" >2122</td>
| style="text-align:left;" | [[oxygen|GOX]]
</tr>
| style="text-align:left;" | [[hydrogen|GH<sub>2</sub>]]
<tr>
| style="text-align:left;" | Gaseous form
<td align="left" >NH<sub>3</sub></td>
| 3997
<td align="right" >3531</td>
| 3.29
<td align="right" >3.32</td>
| 2576
<td align="right" >4337</td>
<td| align="rightleft" >1.12</td>| -
<td align="right"| style="border-right:2px solid grey;">2194</td> | 2550
| 4485
<td align="right" >4143</td>
| 3.92
<td align="right" >3.35</td>
| 2862
<td align="right" >4341</td>
<td| align="rightleft" >1.12</td>| -
| 2519
<td align="right" >2193</td>
|-
</tr>
| style="text-align:left;" rowspan=9 | [[fluorine|F<sub>2</sub>]]
<tr>
<td| style="bordertext-bottomalign:2px solid greyleft;" align="left"| >B<sub>5</sub>[[liquid hydrogen|H<sub>92</sub></td>]] ||
| 4036
<td style="border-bottom:2px solid grey;" align="right" >3502</td>
| 7.94
<td style="border-bottom:2px solid grey;" align="right" >5.14</td>
| 3689
<td style="border-bottom:2px solid grey;" align="right" >5050</td>
| 0.46
<td style="border-bottom:2px solid grey;" align="right" >1.23</td>
<td| style="border-bottomright:2px solid grey;" align="right"| style="border-right:2px solid grey;">2147</td>2556
| 4697
<td style="border-bottom:2px solid grey;" align="right" >4191</td>
| 9.74
<td style="border-bottom:2px solid grey;" align="right" >5.58</td>
| 3985
<td style="border-bottom:2px solid grey;" align="right" >5083</td>
| 0.52
<td style="border-bottom:2px solid grey;" align="right" >1.25</td>
| 2530
<td style="border-bottom:2px solid grey;" align="right" >2140</td>
|-
</tr>
| style="text-align:left;" | H<sub>2</sub>:[[lithium|Li]] 65.2:34.0 ||
<tr>
| 4256
<td style="border-bottom:2px solid grey;" rowspan="9" align="left" >OF<sub>2</sub></td>
| 0.96
<td align="left" >H<sub>2</sub></td>
| 1830
<td align="right" >4014</td>
| 0.19
<td align="right" >5.92</td>
| style="border-right:2px solid grey;" | 2680
<td align="right" >3311</td>
|
<td align="right" >0.39</td>
|
<td align="right" style="border-right:2px solid grey;">2542</td>
|
<td align="right" >4679</td>
|
<td align="right" >7.37</td>
|
<td align="right" >3587</td>
|-
<td align="right" >0.44</td>
| style="text-align:left;" | H<sub>2</sub>:Li 60.7:39.3
<td align="right" >2499</td>
|
</tr>
|
<tr>
|
<td align="left" >CH<sub>4</sub></td>
|
<td align="right" >3485</td>
|
<td align="right" >4.94</td>
| style="border-right:2px solid grey;" |
<td align="right" >4157</td>
| 5050
<td align="right" >1.06</td>
| 1.08
<td align="right" style="border-right:2px solid grey;">2160</td>
| 1974
<td align="right" >4131</td>
| 0.21
<td align="right" >5.58</td>
| 2656
<td align="right" >4207</td>
|-
<td align="right" >1.09</td>
| style="text-align:left;" | [[methane|CH<sub>4</sub>]] ||
<td align="right" >2139</td>
| 3414
</tr>
| 4.53
<tr>
| 3918
<td align="left" >C<sub>2</sub>H<sub>6</sub></td>
| 1.03
<td align="right" >3511</td>
| style="border-right:2px solid grey;" | 2068
<td align="right" >3.87</td>
| 4075
<td align="right" >4539</td>
| 4.74
<td align="right" >1.13</td>
| 3933
<td align="right" style="border-right:2px solid grey;">2176</td>
| 1.04
<td align="right" >4137</td>
| 2064
<td align="right" >3.86</td>
|-
<td align="right" >4538</td>
| style="text-align:left;" | [[ethane|C<sub>2</sub>H<sub>6</sub>]] ||
<td align="right" >1.13</td>
| 3335
<td align="right" >2176</td>
| 3.68
</tr>
| 3914
<tr>
| 1.09
<td align="left" >RP-1</td>
| style="border-right:2px solid grey;" | 2019
<td align="right" >3424</td>
| 3987
<td align="right" >3.87</td>
| 3.78
<td align="right" >4436</td>
| 3923
<td align="right" >1.28</td>
| 1.10
<td align="right" style="border-right:2px solid grey;">2132</td>
| 2014
<td align="right" >4021</td>
|-
<td align="right" >3.85</td>
| style="text-align:left;" | [[monomethylhydrazine|MMH]] ||
<td align="right" >4432</td>
| 3413
<td align="right" >1.28</td>
| 2.39
<td align="right" >2130</td>
| 4074
</tr>
| 1.24
<tr>
| style="border-right:2px solid grey;" | 2063
<td align="left" >MMH</td>
| 4071
<td align="right" >3427</td>
| 2.47
<td align="right" >2.28</td>
| 4091
<td align="right" >4075</td>
| 1.24
<td align="right" >1.24</td>
| 1987
<td align="right" style="border-right:2px solid grey;">2119</td>
|-
<td align="right" >4067</td>
| style="text-align:left;" | [[hydrazine|N<sub>2</sub>H<sub>4</sub>]] ||
<td align="right" >2.58</td>
| 3580
<td align="right" >4133</td>
| 2.32
<td align="right" >1.26</td>
| 4461
<td align="right" >2106</td>
| 1.31
</tr>
| style="border-right:2px solid grey;" | 2219
<tr>
| 4215
<td align="left" >N<sub>2</sub>H<sub>4</sub></td>
| 2.37
<td align="right" >3381</td>
| 4468
<td align="right" >1.51</td>
| 1.31
<td align="right" >3769</td>
| 2122
<td align="right" >1.26</td>
|-
<td align="right" style="border-right:2px solid grey;">2087</td>
| style="text-align:left;" | [[ammonia|NH<sub>3</sub>]] ||
<td align="right" >4008</td>
| 3531
<td align="right" >1.65</td>
| 3.32
<td align="right" >3814</td>
| 4337
<td align="right" >1.27</td>
| 1.12
<td align="right" >2081</td>
| style="border-right:2px solid grey;" | 2194
</tr>
| 4143
<tr>
| 3.35
<td align="left" >MMH/N<sub>2</sub>H<sub>4</sub>/H<sub>2</sub>0 50.5/29.8/19.7</td>
| 4341
<td align="right" >3286</td>
| 1.12
<td align="right" >1.75</td>
| 2193
<td align="right" >3726</td>
|- style="border-bottom:2px solid grey;"
<td align="right" >1.24</td>
| style="text-align:left;" | [[pentaborane(9)|B<sub>5</sub>H<sub>9</sub>]]
<td align="right" style="border-right:2px solid grey;">2025</td>
|
<td align="right" >3908</td>
| 3502
<td align="right" >1.92</td>
| 5.14
<td align="right" >3769</td>
| 5050
<td align="right" >1.25</td>
| 1.23
<td align="right" >2018</td>
| style="border-right:2px solid grey;" | 2147
</tr>
| 4191
<tr>
| 5.58
<td align="left" >B<sub>2</sub>H<sub>6</sub></td>
| 5083
<td align="right" >3653</td>
| 1.25
<td align="right" >3.95</td>
| 2140
<td align="right" >4479</td>
|-
<td align="right" >1.01</td>
| style="text-align:left;" rowspan=9 | [[oxygen difluoride|OF<sub>2</sub>]]
<td align="right" style="border-right:2px solid grey;">2244</td>
| style="text-align:left;" | [[liquid hydrogen|H<sub>2</sub>]] ||
<td align="right" >4367</td>
| 4014
<td align="right" >3.98</td>
| 5.92
<td align="right" >4486</td>
| 3311
<td align="right" >1.02</td>
| 0.39
<td align="right" >2167</td>
| style="border-right:2px solid grey;" | 2542
</tr>
| 4679
<tr>
| 7.37
<td style="border-bottom:2px solid grey;" align="left" >B<sub>5</sub>H<sub>9</sub></td>
| 3587
<td style="border-bottom:2px solid grey;" align="right" >3539</td>
| 0.44
<td style="border-bottom:2px solid grey;" align="right" >4.16</td>
| 2499
<td style="border-bottom:2px solid grey;" align="right" >4825</td>
|-
<td style="border-bottom:2px solid grey;" align="right" >1.20</td>
| style="text-align:left;" | [[methane|CH<sub>4</sub>]] ||
<td style="border-bottom:2px solid grey;" align="right" style="border-right:2px solid grey;">2163</td>
| 3485
<td style="border-bottom:2px solid grey;" align="right" >4239</td>
| 4.94
<td style="border-bottom:2px solid grey;" align="right" >4.30</td>
| 4157
<td style="border-bottom:2px solid grey;" align="right" >4844</td>
| 1.06
<td style="border-bottom:2px solid grey;" align="right" >1.21</td>
<td| style="border-bottomright:2px solid grey;" align="right"| >2161</td>2160
| 4131
</tr>
| 5.58
<tr>
| 4207
<td style="border-bottom:2px solid grey;" rowspan="2" align="left" >F<sub>2</sub>/O<sub>2</sub> 30/70</td>
| 1.09
<td align="left" >H<sub>2</sub></td>
| 2139
<td align="right" >3871</td>
|-
<td align="right" >4.80</td>
| style="text-align:left;" | [[ethane|C<sub>2</sub>H<sub>6</sub>]] ||
<td align="right" >2954</td>
| 3511
<td align="right" >0.32</td>
| 3.87
<td align="right" style="border-right:2px solid grey;">2453</td>
| 4539
<td align="right" >4520</td>
| 1.13
<td align="right" >5.70</td>
| style="border-right:2px solid grey;" | 2176
<td align="right" >3195</td>
| 4137
<td align="right" >0.36</td>
| 3.86
<td align="right" >2417</td>
| 4538
</tr>
| 1.13
<tr>
| 2176
<td style="border-bottom:2px solid grey;" align="left" >RP-1</td>
|-
<td style="border-bottom:2px solid grey;" align="right" >3103</td>
<td| style="bordertext-bottomalign:2px solid greyleft;" align="right"| >3.01</td>[[RP-1]]
|
<td style="border-bottom:2px solid grey;" align="right" >3665</td>
| 3424
<td style="border-bottom:2px solid grey;" align="right" >1.09</td>
| 3.87
<td style="border-bottom:2px solid grey;" align="right" style="border-right:2px solid grey;">1908</td>
| 4436
<td style="border-bottom:2px solid grey;" align="right" >3697</td>
| 1.28
<td style="border-bottom:2px solid grey;" align="right" >3.30</td>
<td| style="border-bottomright:2px solid grey;" align="right"| >3692</td>2132
| 4021
<td style="border-bottom:2px solid grey;" align="right" >1.10</td>
| 3.85
<td style="border-bottom:2px solid grey;" align="right" >1889</td>
| 4432
</tr>
| 1.28
<tr>
| 2130
<td style="border-bottom:2px solid grey;" align="left" >F<sub>2</sub>/O<sub>2</sub> 70/30</td>
|-
<td style="border-bottom:2px solid grey;" align="left" >RP-1</td>
| style="text-align:left;" | [[monomethylhydrazine|MMH]] ||
<td style="border-bottom:2px solid grey;" align="right" >3377</td>
| 3427
<td style="border-bottom:2px solid grey;" align="right" >3.84</td>
| 2.28
<td style="border-bottom:2px solid grey;" align="right" >4361</td>
| 4075
<td style="border-bottom:2px solid grey;" align="right" >1.20</td>
| 1.24
<td style="border-bottom:2px solid grey;" align="right" style="border-right:2px solid grey;">2106</td>
<td| style="border-bottomright:2px solid grey;" align="right"| >3955</td>2119
| 4067
<td style="border-bottom:2px solid grey;" align="right" >3.84</td>
| 2.58
<td style="border-bottom:2px solid grey;" align="right" >4361</td>
| 4133
<td style="border-bottom:2px solid grey;" align="right" >1.20</td>
| 1.26
<td style="border-bottom:2px solid grey;" align="right" >2104</td>
| 2106
</tr>
|-
<tr>
<td| style="bordertext-bottomalign:2px solid greyleft;" align="left"| >F[[hydrazine|N<sub>2</sub>/OH<sub>24</sub>]] 87.8/12.2</td>||
| 3381
<td style="border-bottom:2px solid grey;" align="left" >MMH</td>
| 1.51
<td style="border-bottom:2px solid grey;" align="right" >3525</td>
| 3769
<td style="border-bottom:2px solid grey;" align="right" >2.82</td>
| 1.26
<td style="border-bottom:2px solid grey;" align="right" >4454</td>
<td| style="border-bottomright:2px solid grey;" align="right"| >1.24</td>2087
| 4008
<td style="border-bottom:2px solid grey;" align="right" style="border-right:2px solid grey;">2191</td>
| 1.65
<td style="border-bottom:2px solid grey;" align="right" >4148</td>
| 3814
<td style="border-bottom:2px solid grey;" align="right" >2.83</td>
| 1.27
<td style="border-bottom:2px solid grey;" align="right" >4453</td>
| 2081
<td style="border-bottom:2px solid grey;" align="right" >1.23</td>
|-
<td style="border-bottom:2px solid grey;" align="right" >2186</td>
| style="text-align:left;" | MMH:N<sub>2</sub>H<sub>4</sub>:[[water (molecule)|H<sub>2</sub>O]] 50.5:29.8:19.7 ||
</tr>
| 3286
<tr>
| 1.75
<td style="border-bottom:2px solid grey;" rowspan="6" align="left" >N<sub>2</sub>F<sub>4</sub></td>
| 3726
<td align="left" >CH<sub>4</sub></td>
| 1.24
<td align="right" >3127</td>
| style="border-right:2px solid grey;" | 2025
<td align="right" >6.44</td>
| 3908
<td align="right" >3705</td>
| 1.92
<td align="right" >1.15</td>
| 3769
<td align="right" style="border-right:2px solid grey;">1917</td>
| 1.25
<td align="right" >3692</td>
| 2018
<td align="right" >6.51</td>
|-
<td align="right" >3707</td>
| style="text-align:left;" | [[diborane|B<sub>2</sub>H<sub>6</sub>]] ||
<td align="right" >1.15</td>
| 3653
<td align="right" >1915</td>
| 3.95
</tr>
| 4479
<tr>
| 1.01
<td align="left" >C<sub>2</sub>H<sub>4</sub></td>
| style="border-right:2px solid grey;" | 2244
<td align="right" >3035</td>
| 4367
<td align="right" >3.67</td>
| 3.98
<td align="right" >3741</td>
| 4486
<td align="right" >1.13</td>
| 1.02
<td align="right" style="border-right:2px solid grey;">1844</td>
| 2167
<td align="right" >3612</td>
|- style="border-bottom:2px solid grey;"
<td align="right" >3.71</td>
| style="text-align:left;" | [[pentaborane(9)|B<sub>5</sub>H<sub>9</sub>]]
<td align="right" >3743</td>
|
<td align="right" >1.14</td>
| 3539
<td align="right" >1843</td>
| 4.16
</tr>
| 4825
<tr>
| 1.20
<td align="left" >MMH</td>
| style="border-right:2px solid grey;" | 2163
<td align="right" >3163</td>
| 4239
<td align="right" >3.35</td>
| 4.30
<td align="right" >3819</td>
| 4844
<td align="right" >1.32</td>
| 1.21
<td align="right" style="border-right:2px solid grey;">1928</td>
| 2161
<td align="right" >3730</td>
|-
<td align="right" >3.39</td>
| style="text-align:left;" rowspan=2 | [[fluorine|F<sub>2</sub>]]:[[oxygen|O<sub>2</sub>]] 30:70
<td align="right" >3823</td>
| style="text-align:left;" | [[liquid hydrogen|H<sub>2</sub>]] ||
<td align="right" >1.32</td>
| 3871
<td align="right" >1926</td>
| 4.80
</tr>
| 2954
<tr>
| 0.32
<td align="left" >N<sub>2</sub>H<sub>4</sub></td>
| style="border-right:2px solid grey;" | 2453
<td align="right" >3283</td>
| 4520
<td align="right" >3.22</td>
| 5.70
<td align="right" >4214</td>
| 3195
<td align="right" >1.38</td>
| 0.36
<td align="right" style="border-right:2px solid grey;">2059</td>
| 2417
<td align="right" >3827</td>
|- style="border-bottom:2px solid grey;"
<td align="right" >3.25</td>
| style="text-align:left;" | [[RP-1]]
<td align="right" >4216</td>
|
<td align="right" >1.38</td>
| 3103
<td align="right" >2058</td>
| 3.01
</tr>
| 3665
<tr>
| 1.09
<td align="left" >NH<sub>3</sub></td>
| style="border-right:2px solid grey;" | 1908
<td align="right" >3204</td>
| 3697
<td align="right" >4.58</td>
| 3.30
<td align="right" >4062</td>
| 3692
<td align="right" >1.22</td>
| 1.10
<td align="right" style="border-right:2px solid grey;">2020</td>
| 1889
<td align="right" >3723</td>
|- style="border-bottom:2px solid grey;"
<td align="right" >4.58</td>
| style="text-align:left;" | F<sub>2</sub>:O<sub>2</sub> 70:30
<td align="right" >4062</td>
| style="text-align:left;" | [[RP-1]]
<td align="right" >1.22</td>
|
<td align="right" >2021</td>
| 3377
</tr>
| 3.84
<tr>
| 4361
<td style="border-bottom:2px solid grey;" align="left" >B<sub>5</sub>H<sub>9</sub></td>
| 1.20
<td style="border-bottom:2px solid grey;" align="right" >3259</td>
<td| style="border-bottomright:2px solid grey;" align="right"| >7.76</td>2106
| 3955
<td style="border-bottom:2px solid grey;" align="right" >4791</td>
| 3.84
<td style="border-bottom:2px solid grey;" align="right" >1.34</td>
| 4361
<td style="border-bottom:2px solid grey;" align="right" style="border-right:2px solid grey;">1997</td>
| 1.20
<td style="border-bottom:2px solid grey;" align="right" >3898</td>
| 2104
<td style="border-bottom:2px solid grey;" align="right" >8.31</td>
<td|- style="border-bottom:2px solid grey;" align="right" >4803</td>
| style="text-align:left;" | F<sub>2</sub>:O<sub>2</sub> 87.8:12.2
<td style="border-bottom:2px solid grey;" align="right" >1.35</td>
| style="text-align:left;" | [[monomethylhydrazine|MMH]]
<td style="border-bottom:2px solid grey;" align="right" >1992</td>
|
</tr>
| 3525
<tr>
| 2.82
<td style="border-bottom:2px solid grey;" rowspan="4" align="left" >ClF<sub>5</sub></td>
| 4454
<td align="left" >MMH</td>
| 1.24
<td align="right" >2962</td>
| style="border-right:2px solid grey;" | 2191
<td align="right" >2.82</td>
| 4148
<td align="right" >3577</td>
| 2.83
<td align="right" >1.40</td>
| 4453
<td align="right" style="border-right:2px solid grey;">1837</td>
| 1.23
<td align="right" >3488</td>
| 2186
<td align="right" >2.83</td>
|- style="border-bottom:2px solid grey;"
<td align="right" >3579</td>
! Oxidizer
<td align="right" >1.40</td>
! Fuel
<td align="right" >1837</td>
! Comment
</tr>
! style="text-align:right;" | ''V<sub>e</sub>''
<tr>
! style="text-align:right;" | ''r''
<td align="left" >N<sub>2</sub>H<sub>4</sub></td>
<td! alignstyle="text-align:right;" | ''T<sub>3069c</tdsub>''
<td! alignstyle="text-align:right;" >2.66</td>| ''d''
! style="border-right:2px solid grey; text-align:right;" | ''C*''
<td align="right" >3894</td>
<td! alignstyle="text-align:right;" | ''V<sub>1.47e</tdsub>''
<td align="right"! style="bordertext-align:right:2px;" solid| grey;">1935</td>''r''
<td! alignstyle="text-align:right;" | ''T<sub>3580c</tdsub>''
<td! alignstyle="text-align:right;" >2.71</td>| ''d''
<td! alignstyle="text-align:right;" >3905</td>| ''C*''
|-
<td align="right" >1.47</td>
| rowspan=6 style="text-align:left;" | [[tetrafluorohydrazine|N<sub>2</sub>F<sub>4</sub>]]
<td align="right" >1934</td>
| style="text-align:left;" | [[methane|CH<sub>4</sub>]] ||
</tr>
| 3127
<tr>
| 6.44
<td align="left" >MMH/N<sub>2</sub>H<sub>4</sub> 86/14</td>
| 3705
<td align="right" >2971</td>
| 1.15
<td align="right" >2.78</td>
| style="border-right:2px solid grey;" | 1917
<td align="right" >3575</td>
| 3692
<td align="right" >1.41</td>
| 6.51
<td align="right" style="border-right:2px solid grey;">1844</td>
| 3707
<td align="right" >3498</td>
| 1.15
<td align="right" >2.81</td>
| 1915
<td align="right" >3579</td>
|-
<td align="right" >1.41</td>
| style="text-align:left;" | [[ethane|C<sub>2</sub>H<sub>4</sub>]] ||
<td align="right" >1844</td>
| 3035
</tr>
| 3.67
<tr>
| 3741
<td style="border-bottom:2px solid grey;" align="left" >MMH/N<sub>2</sub>H<sub>4</sub>/N<sub>2</sub>H<sub>5</sub>NO<sub>3</sub> 55/26/19</td>
| 1.13
<td style="border-bottom:2px solid grey;" align="right" >2989</td>
<td| style="border-bottomright:2px solid grey;" align="right"| >2.46</td>1844
| 3612
<td style="border-bottom:2px solid grey;" align="right" >3717</td>
| 3.71
<td style="border-bottom:2px solid grey;" align="right" >1.46</td>
| 3743
<td style="border-bottom:2px solid grey;" align="right" style="border-right:2px solid grey;">1864</td>
| 1.14
<td style="border-bottom:2px solid grey;" align="right" >3500</td>
| 1843
<td style="border-bottom:2px solid grey;" align="right" >2.49</td>
|-
<td style="border-bottom:2px solid grey;" align="right" >3722</td>
| style="text-align:left;" | [[monomethylhydrazine|MMH]] ||
<td style="border-bottom:2px solid grey;" align="right" >1.46</td>
| 3163
<td style="border-bottom:2px solid grey;" align="right" >1863</td>
| 3.35
</tr>
| 3819
<tr>
| 1.32
<td style="border-bottom:2px solid grey;" rowspan="2" align="left" >ClF<sub>3</sub></td>
| style="border-right:2px solid grey;" | 1928
<td align="left" >MMH/N<sub>2</sub>H<sub>4</sub>/N<sub>2</sub>H<sub>5</sub>NO<sub>3</sub> 55/26/19</td>
| 3730
<td align="right" >2789</td>
| 3.39
<td align="right" >2.97</td>
| 3823
<td align="right" >3407</td>
| 1.32
<td align="right" >1.42</td>
| 1926
<td align="right" style="border-right:2px solid grey;">1739</td>
|-
<td align="right" >3274</td>
| style="text-align:left;" | [[hydrazine|N<sub>2</sub>H<sub>4</sub>]] ||
<td align="right" >3.01</td>
| 3283
<td align="right" >3413</td>
| 3.22
<td align="right" >1.42</td>
| 4214
<td align="right" >1739</td>
| 1.38
</tr>
| style="border-right:2px solid grey;" | 2059
<tr>
| 3827
<td style="border-bottom:2px solid grey;" align="left" >N<sub>2</sub>H<sub>4</sub></td>
| 3.25
<td style="border-bottom:2px solid grey;" align="right" >2885</td>
| 4216
<td style="border-bottom:2px solid grey;" align="right" >2.81</td>
| 1.38
<td style="border-bottom:2px solid grey;" align="right" >3650</td>
| 2058
<td style="border-bottom:2px solid grey;" align="right" >1.49</td>
|-
<td style="border-bottom:2px solid grey;" align="right" style="border-right:2px solid grey;">1824</td>
<td| style="bordertext-bottomalign:2px solid greyleft;" align="right"| [[ammonia|NH<sub>33563</tdsub>]] ||
| 3204
<td style="border-bottom:2px solid grey;" align="right" >2.89</td>
| 4.58
<td style="border-bottom:2px solid grey;" align="right" >3666</td>
| 4062
<td style="border-bottom:2px solid grey;" align="right" >1.50</td>
| 1.22
<td style="border-bottom:2px solid grey;" align="right" >1822</td>
| style="border-right:2px solid grey;" | 2020
</tr>
| 3723
<tr>
| 4.58
<td style="border-bottom:2px solid grey;" rowspan="9" align="left" >N<sub>2</sub>O<sub>4</sub></td>
| 4062
<td align="left" >MMH</td>
| 1.22
<td align="right" >2827</td>
| 2021
<td align="right" >2.17</td>
|- style="border-bottom:2px solid grey;"
<td align="right" >3122</td>
| style="text-align:left;" | [[pentaborane(9)|B<sub>5</sub>H<sub>9</sub>]]
<td align="right" >1.19</td>
|
<td align="right" style="border-right:2px solid grey;">1745</td>
| 3259
<td align="right" >3347</td>
| 7.76
<td align="right" >2.37</td>
| 4791
<td align="right" >3125</td>
| 1.34
<td align="right" >1.20</td>
| style="border-right:2px solid grey;" | 1997
<td align="right" >1724</td>
| 3898
</tr>
| 8.31
<tr>
| 4803
<td align="left" >MMH/Be 76.6/29.4</td>
| 1.35
<td align="right" >3106</td>
| 1992
<td align="right" >0.99</td>
|-
<td align="right" >3193</td>
| style="text-align:left;" rowspan=4 | [[chlorine pentafluoride|ClF<sub>5</sub>]]
<td align="right" >1.17</td>
| style="text-align:left;" | [[monomethylhydrazine|MMH]] ||
<td align="right" style="border-right:2px solid grey;">1858</td>
| 2962
<td align="right" >3720</td>
| 2.82
<td align="right" >1.10</td>
| 3577
<td align="right" >3451</td>
| 1.40
<td align="right" >1.24</td>
| style="border-right:2px solid grey;" | 1837
<td align="right" >1849</td>
| 3488
</tr>
| 2.83
<tr>
| 3579
<td align="left" >MMH/Al 63/27</td>
| 1.40
<td align="right" >2891</td>
| 1837
<td align="right" >0.85</td>
|-
<td align="right" >3294</td>
| style="text-align:left;" | [[hydrazine|N<sub>2</sub>H<sub>4</sub>]] ||
<td align="right" >1.27</td>
| 3069
<td align="right" style="border-right:2px solid grey;">1785</td>
| 2.66
<td ></td>
| 3894
<td ></td>
| 1.47
<td ></td>
| style="border-right:2px solid grey;" | 1935
<td ></td>
| 3580
<td ></td>
| 2.71
</tr>
| 3905
<tr>
| 1.47
<td align="left" >MMH/Al 58/42</td>
| 1934
<td ></td>
|-
<td ></td>
| style="text-align:left;" | MMH:N<sub>2</sub>H<sub>4</sub> 86:14 ||
<td ></td>
| 2971
<td ></td>
| 2.78
<td style="border-right:2px solid grey;"></td>
| 3575
<td align="right" >3460</td>
| 1.41
<td align="right" >0.87</td>
| style="border-right:2px solid grey;" | 1844
<td align="right" >3450</td>
| 3498
<td align="right" >1.31</td>
| 2.81
<td align="right" >1771</td>
| 3579
</tr>
| 1.41
<tr>
| 1844
<td align="left" >N<sub>2</sub>H<sub>4</sub></td>
|- style="border-bottom:2px solid grey;"
<td align="right" >2862</td>
| style="text-align:left;" | MMH:N<sub>2</sub>H<sub>4</sub>:N<sub>2</sub>H<sub>5</sub>NO<sub>3</sub> 55:26:19
<td align="right" >1.36</td>
|
<td align="right" >2992</td>
| 2989
<td align="right" >1.21</td>
| 2.46
<td align="right" style="border-right:2px solid grey;">1781</td>
| 3717
<td align="right" >3369</td>
| 1.46
<td align="right" >1.42</td>
| style="border-right:2px solid grey;" | 1864
<td align="right" >2993</td>
| 3500
<td align="right" >1.22</td>
| 2.49
<td align="right" >1770</td>
| 3722
</tr>
| 1.46
<tr>
| 1863
<td align="left" >N<sub>2</sub>H<sub>4</sub>/UDMH 50/50</td>
|-
<td align="right" >2831</td>
| style="text-align:left;" rowspan=2 | [[chlorine trifluoride|ClF<sub>3</sub>]]
<td align="right" >1.98</td>
| style="text-align:left;" | [[monomethylhydrazine|MMH]]:[[hydrazine|N<sub>2</sub>H<sub>4</sub>]]:[[Hydrazine_nitrate|N<sub>2</sub>H<sub>5</sub>NO<sub>3</sub> ]]55:26:19
<td align="right" >3095</td>
| style="text-align:left;" | Hypergolic
<td align="right" >1.12</td>
| 2789
<td align="right" style="border-right:2px solid grey;">1747</td>
| 2.97
<td align="right" >3349</td>
| 3407
<td align="right" >2.15</td>
| 1.42
<td align="right" >3096</td>
| style="border-right:2px solid grey;" | 1739
<td align="right" >1.20</td>
| 3274
<td align="right" >1731</td>
| 3.01
</tr>
| 3413
<tr>
| 1.42
<td align="left" >N<sub>2</sub>H<sub>4</sub>/Be 80/20</td>
| 1739
<td align="right" >3209</td>
|- style="border-bottom:2px solid grey;"
<td align="right" >0.51</td>
| style="text-align:left;" | [[hydrazine|N<sub>2</sub>H<sub>4</sub>]]
<td align="right" >3038</td>
| style="text-align:left;" | Hypergolic
<td align="right" >1.20</td>
| 2885
<td align="right" style="border-right:2px solid grey;">1918</td>
| 2.81
<td ></td>
| 3650
<td ></td>
| 1.49
<td ></td>
| style="border-right:2px solid grey;" | 1824
<td ></td>
| 3356
<td ></td>
| 2.89
</tr>
| 3666
<tr>
| 1.50
<td align="left" >N<sub>2</sub>H<sub>4</sub>/Be 76.6/23.4</td>
| 1822
<td ></td>
|-
<td ></td>
| style="text-align:left;" rowspan=9 | [[dinitrogen tetroxide|N<sub>2</sub>O<sub>4</sub>]]
<td ></td>
| style="text-align:left;" | [[monomethylhydrazine|MMH]]
<td ></td>
| style="text-align:left;" | Hypergolic, common
<td style="border-right:2px solid grey;"></td>
| 2827
<td align="right" >3849</td>
| 2.17
<td align="right" >0.60</td>
| 3122
<td align="right" >3230</td>
| 1.19
<td align="right" >1.22</td>
| style="border-right:2px solid grey;" | 1745
<td align="right" >1913</td>
| 3347
</tr>
| 2.37
<tr>
| 3125
<td style="border-bottom:2px solid grey;" align="left" >B<sub>5</sub>H<sub>9</sub></td>
| 1.20
<td style="border-bottom:2px solid grey;" align="right" >2927</td>
| 1724
<td style="border-bottom:2px solid grey;" align="right" >3.18</td>
|-
<td style="border-bottom:2px solid grey;" align="right" >3678</td>
| style="text-align:left;" | [[monomethylhydrazine|MMH]]:[[beryllium|Be]] 76.6:29.4 ||
<td style="border-bottom:2px solid grey;" align="right" >1.11</td>
| 3106
<td style="border-bottom:2px solid grey;" align="right" style="border-right:2px solid grey;">1782</td>
| 0.99
<td style="border-bottom:2px solid grey;" align="right" >3513</td>
| 3193
<td style="border-bottom:2px solid grey;" align="right" >3.26</td>
| 1.17
<td style="border-bottom:2px solid grey;" align="right" >3706</td>
<td| style="border-bottomright:2px solid grey;" align="right"| >1.11</td>1858
| 3720
<td style="border-bottom:2px solid grey;" align="right" >1781</td>
| 1.10
</tr>
| 3451
<tr>
| 1.24
<td style="border-bottom:2px solid grey;" rowspan="2" align="left" >NO/N<sub>2</sub>O<sub>4</sub> 25/75</td>
| 1849
<td align="left" >MMH</td>
|-
<td align="right" >2839</td>
| style="text-align:left;" | MMH:[[aluminium|Al]] 63:27 ||
<td align="right" >2.28</td>
| 2891
<td align="right" >3153</td>
| 0.85
<td align="right" >1.17</td>
| 3294
<td align="right" style="border-right:2px solid grey;">1753</td>
| 1.27
<td align="right" >3360</td>
| style="border-right:2px solid grey;" | 1785
<td align="right" >2.50</td>
|
<td align="right" >3158</td>
|
<td align="right" >1.18</td>
|
<td align="right" >1732</td>
|
</tr>
|
<tr>
|-
<td style="border-bottom:2px solid grey;" align="left" >N<sub>2</sub>H<sub>4</sub>/Be 76.6/23.4</td>
<td| style="bordertext-bottomalign:2px solid greyleft;" align="right"| >2872</td>MMH:Al 58:42
|
<td style="border-bottom:2px solid grey;" align="right" >1.43</td>
|
<td style="border-bottom:2px solid grey;" align="right" >3023</td>
|
<td style="border-bottom:2px solid grey;" align="right" >1.19</td>
|
<td style="border-bottom:2px solid grey;" align="right" style="border-right:2px solid grey;">1787</td>
|
<td style="border-bottom:2px solid grey;" align="right" >3381</td>
<td| style="border-bottomright:2px solid grey;" align="right" >1.51</td>|
| 3460
<td style="border-bottom:2px solid grey;" align="right" >3026</td>
| 0.87
<td style="border-bottom:2px solid grey;" align="right" >1.20</td>
| 3450
<td style="border-bottom:2px solid grey;" align="right" >1775</td>
| 1.31
</tr>
| 1771
<tr>
|-
<td style="border-bottom:2px solid grey;" rowspan="3" align="left" >IRFNA IIIa</td>
| style="text-align:left;" | [[hydrazine|N<sub>2</sub>H<sub>4</sub>]]
<td align="left" >UDMH/DETA 60/40</td>
| style="text-align:left;" | Hypergolic, common
<td align="right" >2638</td>
| 2862
<td align="right" >3.26</td>
| 1.36
<td align="right" >2848</td>
| 2992
<td align="right" >1.30</td>
| 1.21
<td align="right" style="border-right:2px solid grey;">1627</td>
| style="border-right:2px solid grey;" | 1781
<td align="right" >3123</td>
| 3369
<td align="right" >3.41</td>
| 1.42
<td align="right" >2839</td>
| 2993
<td align="right" >1.31</td>
| 1.22
<td align="right" >1617</td>
| 1770
</tr>
|-
<tr>
| style="text-align:left;" | N<sub>2</sub>H<sub>4</sub>:[[unsymmetrical dimethylhydrazine|UDMH]] 50:50
<td align="left" >MMH</td>
| style="text-align:left;" | Hypergolic, common
<td align="right" >2690</td>
| 2831
<td align="right" >2.59</td>
| 1.98
<td align="right" >2849</td>
| 3095
<td align="right" >1.27</td>
| 1.12
<td align="right" style="border-right:2px solid grey;">1665</td>
| style="border-right:2px solid grey;" | 1747
<td align="right" >3178</td>
| 3349
<td align="right" >2.71</td>
| 2.15
<td align="right" >2841</td>
| 3096
<td align="right" >1.28</td>
| 1.20
<td align="right" >1655</td>
| 1731
</tr>
|-
<tr>
| style="text-align:left;" | N<sub>2</sub>H<sub>4</sub>:Be 80:20 ||
<td style="border-bottom:2px solid grey;" align="left" >UDMH</td>
| 3209
<td style="border-bottom:2px solid grey;" align="right" >2668</td>
| 0.51
<td style="border-bottom:2px solid grey;" align="right" >3.13</td>
| 3038
<td style="border-bottom:2px solid grey;" align="right" >2874</td>
| 1.20
<td style="border-bottom:2px solid grey;" align="right" >1.26</td>
<td| style="border-bottomright:2px solid grey;" align="right"| style="border-right:2px solid grey;">1648</td>1918
|
<td style="border-bottom:2px solid grey;" align="right" >3157</td>
|
<td style="border-bottom:2px solid grey;" align="right" >3.31</td>
|
<td style="border-bottom:2px solid grey;" align="right" >2864</td>
|
<td style="border-bottom:2px solid grey;" align="right" >1.27</td>
|
<td style="border-bottom:2px solid grey;" align="right" >1634</td>
|-
</tr>
| style="text-align:left;" | N<sub>2</sub>H<sub>4</sub>:Be 76.6:23.4
<tr>
|
<td style="border-bottom:2px solid grey;" rowspan="3" align="left" >IRFNA IV HDA</td>
|
<td align="left" >UDMH/DETA 60/40</td>
|
<td align="right" >2689</td>
|
<td align="right" >3.06</td>
|
<td align="right" >2903</td>
| style="border-right:2px solid grey;" |
<td align="right" >1.32</td>
| 3849
<td align="right" style="border-right:2px solid grey;">1656</td>
| 0.60
<td align="right" >3187</td>
| 3230
<td align="right" >3.25</td>
| 1.22
<td align="right" >2951</td>
| 1913
<td align="right" >1.33</td>
|- style="border-bottom:2px solid grey;"
<td align="right" >1641</td>
| style="text-align:left;" | [[Pentaborane(9)|B<sub>5</sub>H<sub>9</sub>]]
</tr>
|
<tr>
| 2927
<td align="left" >MMH</td>
| 3.18
<td align="right" >2742</td>
| 3678
<td align="right" >2.43</td>
| 1.11
<td align="right" >2953</td>
| style="border-right:2px solid grey;" | 1782
<td align="right" >1.29</td>
| 3513
<td align="right" style="border-right:2px solid grey;">1696</td>
| 3.26
<td align="right" >3242</td>
| 3706
<td align="right" >2.58</td>
| 1.11
<td align="right" >2947</td>
| 1781
<td align="right" >1.31</td>
|-
<td align="right" >1680</td>
| style="text-align:left;" rowspan=2 | [[nitric oxide|NO]]:[[dinitrogen tetroxide|N<sub>2</sub>O<sub>4</sub>]] 25:75
</tr>
| style="text-align:left;" | [[monomethylhydrazine|MMH]] ||
<tr>
| 2839
<td style="border-bottom:2px solid grey;" align="left" >UDMH</td>
| 2.28
<td style="border-bottom:2px solid grey;" align="right" >2719</td>
| 3153
<td style="border-bottom:2px solid grey;" align="right" >2.95</td>
| 1.17
<td style="border-bottom:2px solid grey;" align="right" >2983</td>
<td| style="border-bottomright:2px solid grey;" align="right"| >1.28</td>1753
| 3360
<td style="border-bottom:2px solid grey;" align="right" style="border-right:2px solid grey;">1676</td>
| 2.50
<td style="border-bottom:2px solid grey;" align="right" >3220</td>
| 3158
<td style="border-bottom:2px solid grey;" align="right" >3.12</td>
| 1.18
<td style="border-bottom:2px solid grey;" align="right" >2977</td>
| 1732
<td style="border-bottom:2px solid grey;" align="right" >1.29</td>
<td|- style="border-bottom:2px solid grey;" align="right" >1662</td>
| style="text-align:left;" | [[hydrazine|N<sub>2</sub>H<sub>4</sub>]]:[[beryllium|Be]] 76.6:23.4
</tr>
|
<tr>
| 2872
<td style="border-bottom:2px solid grey;" rowspan="4" align="left" >H<sub>2</sub>O<sub>2</sub></td>
| 1.43
<td align="left" >MMH</td>
| 3023
<td align="right" >2790</td>
| 1.19
<td align="right" >3.46</td>
| style="border-right:2px solid grey;" | 1787
<td align="right" >2720</td>
| 3381
<td align="right" >1.24</td>
| 1.51
<td align="right" style="border-right:2px solid grey;">1726</td>
| 3026
<td align="right" >3301</td>
| 1.20
<td align="right" >3.69</td>
| 1775
<td align="right" >2707</td>
|-
<td align="right" >1.24</td>
| style="text-align:left;" rowspan=3 | [[inhibited red fuming nitric acid|IRFNA IIIa]]
<td align="right" >1714</td>
| style="text-align:left;" | [[unsymmetrical dimethylhydrazine|UDMH]]:[[diethylenetriamine|DETA]] 60:40
</tr>
| style="text-align:left;" | Hypergolic
<tr>
| 2638
<td align="left" >N<sub>2</sub>H<sub>4</sub></td>
| 3.26
<td align="right" >2810</td>
| 2848
<td align="right" >2.05</td>
| 1.30
<td align="right" >2651</td>
| style="border-right:2px solid grey;" | 1627
<td align="right" >1.24</td>
| 3123
<td align="right" style="border-right:2px solid grey;">1751</td>
| 3.41
<td align="right" >3700</td>
| 2839
<td align="right" >2.12</td>
| 1.31
<td align="right" >2645</td>
| 1617
<td align="right" >1.25</td>
|-
<td align="right" >1744</td>
| style="text-align:left;" | [[monomethylhydrazine|MMH]]
</tr>
| style="text-align:left;" | Hypergolic
<tr>
| 2690
<td align="left" >N<sub>2</sub>H<sub>4</sub>/Be 74.5/25.5</td>
| 2.59
<td align="right" >3289</td>
| 2849
<td align="right" >0.48</td>
| 1.27
<td align="right" >2915</td>
| style="border-right:2px solid grey;" | 1665
<td align="right" >1.21</td>
| 3178
<td align="right" style="border-right:2px solid grey;">1943</td>
| 2.71
<td align="right" >3954</td>
| 2841
<td align="right" >0.57</td>
| 1.28
<td align="right" >3098</td>
| 1655
<td align="right" >1.24</td>
|- style="border-bottom:2px solid grey;"
<td align="right" >1940</td>
| style="text-align:left;" | [[unsymmetrical dimethylhydrazine|UDMH]]
</tr>
| style="text-align:left;" | Hypergolic
<tr>
| 2668
<td style="border-bottom:2px solid grey;" align="left" >B<sub>5</sub>H<sub>9</sub></td>
| 3.13
<td style="border-bottom:2px solid grey;" align="right" >3016</td>
| 2874
<td style="border-bottom:2px solid grey;" align="right" >2.20</td>
| 1.26
<td style="border-bottom:2px solid grey;" align="right" >2667</td>
<td| style="border-bottomright:2px solid grey;" align="right"| >1.02</td>1648
| 3157
<td style="border-bottom:2px solid grey;" align="right" style="border-right:2px solid grey;">1828</td>
| 3.31
<td style="border-bottom:2px solid grey;" align="right" >3642</td>
| 2864
<td style="border-bottom:2px solid grey;" align="right" >2.09</td>
| 1.27
<td style="border-bottom:2px solid grey;" align="right" >2597</td>
| 1634
<td style="border-bottom:2px solid grey;" align="right" >1.01</td>
|-
<td style="border-bottom:2px solid grey;" align="right" >1817</td>
| style="text-align:left;" rowspan=3 | [[inhibited red fuming nitric acid|IRFNA IV HDA]]
</tr>
| style="text-align:left;" | [[unsymmetrical dimethylhydrazine|UDMH]]:[[diethylenetriamine|DETA]] 60:40
<tr>
<td| rowspanstyle="2" text-align=":left;" >H<sub>2</sub>H<sub>4</sub></td>| Hypergolic
| 2689
<td align="left" >B<sub>2</sub>H<sub>6</sub></td>
| 3.06
<td align="right" >3342</td>
| 2903
<td align="right" >1.16</td>
| 1.32
<td align="right" >2231</td>
| style="border-right:2px solid grey;" | 1656
<td align="right" >0.63</td>
| 3187
<td align="right" style="border-right:2px solid grey;">2080</td>
| 3.25
<td align="right" >3953</td>
| 2951
<td align="right" >1.16</td>
| 1.33
<td align="right" >2231</td>
| 1641
<td align="right" >0.63</td>
|-
<td align="right" >2080</td>
| style="text-align:left;" | [[monomethylhydrazine|MMH]]
</tr>
| style="text-align:left;" | Hypergolic
<tr>
| 2742
<td align="left" >B<sub>5</sub>H<sub>9</sub></td>
| 2.43
<td align="right" >3204</td>
| 2953
<td align="right" >1.27</td>
| 1.29
<td align="right" >2441</td>
| style="border-right:2px solid grey;" | 1696
<td align="right" >0.80</td>
| 3242
<td align="right" style="border-right:2px solid grey;">1960</td>
| 2.58
<td align="right" >3819</td>
| 2947
<td align="right" >1.27</td>
| 1.31
<td align="right" >2441</td>
| 1680
<td align="right" >0.80</td>
|- style="border-bottom:2px solid grey;"
<td align="right" >1960</td>
| style="text-align:left;" | [[unsymmetrical dimethylhydrazine|UDMH]]
</tr>
| style="text-align:left;" | Hypergolic
</table>
| 2719
| 2.95
| 2983
| 1.28
| style="border-right:2px solid grey;" | 1676
| 3220
| 3.12
| 2977
| 1.29
| 1662
|-
| style="text-align:left;" rowspan=4 | [[hydrogen peroxide|H<sub>2</sub>O<sub>2</sub>]]
| style="text-align:left;" | [[monomethylhydrazine|MMH]] ||
| 2790
| 3.46
| 2720
| 1.24
| style="border-right:2px solid grey;" | 1726
| 3301
| 3.69
| 2707
| 1.24
| 1714
|-
| style="text-align:left;" | [[hydrazine|N<sub>2</sub>H<sub>4</sub>]] ||
| 2810
| 2.05
| 2651
| 1.24
| style="border-right:2px solid grey;" | 1751
| 3308
| 2.12
| 2645
| 1.25
| 1744
|-
| style="text-align:left;" | [[hydrazine|N<sub>2</sub>H<sub>4</sub>]]:[[beryllium|Be]] 74.5:25.5 ||
| 3289
| 0.48
| 2915
| 1.21
| style="border-right:2px solid grey;" | 1943
| 3954
| 0.57
| 3098
| 1.24
| 1940
|- style="border-bottom:2px solid grey;"
| style="text-align:left;" | [[pentaborane(9)|B<sub>5</sub>H<sub>9</sub>]]
|
| 3016
| 2.20
| 2667
| 1.02
| style="border-right:2px solid grey;" | 1828
| 3642
| 2.09
| 2597
| 1.01
| 1817
<!-- Hydrazine doesn't seem to be a useful rocket fuel oxidizer. Please cite your source.
|-
| rowspan=2 style="text-align:left;" | [[hydrazine|N<sub>2</sub>H<sub>4</sub>]]
| style="text-align:left;" | [[diborane|B<sub>2</sub>H<sub>6</sub>]] ||
| 3342
| 1.16
| 2231
| 0.63
| style="border-right:2px solid grey;" | 2080
| 3953
| 1.16
| 2231
| 0.63
| 2080
|-
| style="text-align:left;" | [[pentaborane(9)|B<sub>5</sub>H<sub>9</sub>]] ||
| 3204
| 1.27
| 2441
| 0.80
| style="border-right:2px solid grey;" | 1960
| 3819
| 1.27
| 2441
| 0.80
| 1960
-->
|-
! style="border-top:2px solid grey;" | Oxidizer
! style="border-top:2px solid grey;" | Fuel
! style="border-top:2px solid grey;" | Comment
! style="border-top:2px solid grey; text-align:right;" | ''V<sub>e</sub>''
! style="border-top:2px solid grey; text-align:right;" | ''r''
! style="border-top:2px solid grey; text-align:right;" | ''T<sub>c</sub>''
! style="border-top:2px solid grey; text-align:right;" | ''d''
! style="border-top:2px solid grey; border-right:2px solid grey; text-align:right;" | ''C*''
! style="border-top:2px solid grey; text-align:right;" | ''V<sub>e</sub>''
! style="border-top:2px solid grey; text-align:right;" | ''r''
! style="border-top:2px solid grey; text-align:right;" | ''T<sub>c</sub>''
! style="border-top:2px solid grey; text-align:right;" | ''d''
! style="border-top:2px solid grey; text-align:right;" | ''C*''
|}
 
Definitions of some of the mixtures:
 
*;[[inhibited red fuming nitric acid|IRFNA IIIa]]: 83.4% [[nitric acid|HNO<sub>3</sub>]], 14% [[nitrogen dioxide|NO<sub>2</sub>]], 2% [[water (molecule)|H<sub>2</sub>O]], 0.6% [[hydrogen fluoride|HF]]
* ;IRFNA IV HDA: 54.3% HNO<sub>3</sub>, 44% NO<sub>2</sub>, 1% H<sub>2</sub>O, 0.7% HF
* ;[[RP-1]]: seeSee MIL-P-25576C, basically kerosene (approximately {{chem|C|10|H|18}})
;MMH [[monomethylhydrazine]]: {{chem|C|H|3|N|H|N|H|2}}
* MMH: CH<sub>3</sub>NHNH<sub>2</sub>
 
Has not all data for CO/O{{sub|2}}, purposed for NASA for Martian-based rockets, only a specific impulse about 250&nbsp;s.
 
;''r'': Mixture ratio: mass oxidizer / mass fuel
;''V''<sub>e</sub>: Average exhaust velocity, m/s. The same measure as specific impulse in different units, numerically equal to specific impulse in N·s/kg.
;''C*'': Characteristic velocity, m/s. Equal to chamber pressure multiplied by throat area, divided by [[mass flow rate]]. Used to check experimental rocket's combustion efficiency.
;''T''<sub>c</sub>: Chamber temperature, °C
;''d'': [[Bulk density]] of fuel and oxidizer, g/cm<sup>3</sup>
 
===Monopropellants===
{| class="wikitable" border="1" style="text-align:right;"
|-
! rowspan=2 | Propellant
! rowspan=2 | Comment
! colspan=4 style="border-right:2px solid grey;" | Optimum expansion from<br>68.05 atm to 1 atm{{citation needed|reason=Uncited values need a source|date=April 2016}}
! colspan=4 | Expansion from<br>68.05 atm to vacuum (0 atm)<br>(Area<sub>nozzle</sub> = 40:1){{citation needed|reason=Uncited values need a source|date=April 2016}}
|- style="border-bottom:2px solid grey;"
! style="text-align:right;" | ''V''<sub>e</sub>
! style="text-align:right;" | ''T''<sub>c</sub>
! style="text-align:right;" | ''d''
! style="border-right:2px solid grey; text-align:right;" | ''C*''
! style="text-align:right;" | ''V''<sub>e</sub>
! style="text-align:right;" | ''T''<sub>c</sub>
! style="text-align:right;" | ''d''
! style="text-align:right;" | ''C*''
|-
| style="text-align:left;" | [[Ammonium dinitramide]] (LMP-103S)<ref>{{cite conference |url=http://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1270&context=smallsat |title=Expanding the ADN-based Monopropellant Thruster Family |last1=Anflo |first1=K. |last2=Moore |first2=S. |last3=King |first3=P. |conference=23rd Annual AIAA/USU Conference on Small Satellites |id=SSC09-II-4 }}</ref><ref name=15ASMD/>
| style="text-align:left;" | PRISMA mission (2010–2015)<br>5 S/Cs launched 2016<ref>{{cite conference |title=HPGP® - High Performance Green Propulsion |url=https://polsa.gov.pl/images/news/Swe_Pol_2017_Prezetacje/Swe_Polish-Space-Ind_SpS_ECAPS_Presentation.pdf |last1=Dingertz |first1=Wilhelm |date=10 October 2017 |conference=ECAPS: Polish - Swedish Space Industry Meeting |access-date=14 December 2017}}</ref>
|
| 1608
| 1.24
| style="border-right:2px solid grey;" |
|
| 1608
| 1.24
|
|-
| style="text-align:left;" | [[Hydrazine]]<ref name=15ASMD/>
| style="text-align:left;" | Common
|
| 883
| 1.01
| style="border-right:2px solid grey;" |
|
| 883
| 1.01
|
|-
| style="text-align:left;" | [[Hydrogen peroxide]]
| style="text-align:left;" | Common
| 1610
| 1270
| 1.45
| style="border-right:2px solid grey;" | 1040
| 1860
| 1270
| 1.45
| 1040
|-
| style="text-align:left;" | [[Hydroxylammonium nitrate]] (AF-M315E)<ref name=15ASMD/>
| style="text-align:left;" |
|
| 1893
| 1.46
| style="border-right:2px solid grey;" |
|
| 1893
| 1.46
|
|-
| style="text-align:left;" | [[Nitromethane]]
| style="text-align:left;" |
|
|
|
| style="border-right:2px solid grey;" |
|
|
|
|
|- style="border-top:2px solid grey;"
! Propellant
! Comment
! style="text-align:right;" | ''V''<sub>e</sub>
! style="text-align:right;" | ''T''<sub>c</sub>
! style="text-align:right;" | ''d''
! style="border-right:2px solid grey; text-align:right;" | ''C*''
! style="text-align:right;" | ''V''<sub>e</sub>
! style="text-align:right;" | ''T''<sub>c</sub>
! style="text-align:right;" | ''d''
! style="text-align:right;" | ''C*''
|}
 
==References==
{{Reflist|refs=
<ref name=15ASMD>{{cite conference |title=Advanced Monopropellants Combustion Chambers and Monolithic Catalyst for Small Satellite Propulsion |conference=15th Annual Space and Missile Defense Conference |date=13 August 2012 |url=https://uppsagd.files.wordpress.com/2012/03/advanced_monopropellants_combustion_chambers_and_monolithic_catalyst_for_small_satellite_propulsion.pdf |last1=Shchetkovskiy |first1=Anatoliy |last2=McKechnie |first2=Tim |last3=Mustaikis |first3=Steven |location=Huntsville, AL |access-date=14 December 2017}}</ref>
}}
 
==External links==
* [http://rocketworkbench.sourceforge.net/equil.phtml Cpropep-Web] an online computer program to calculate propellant performance in rocket engines
* [http://www.lpre.de/resources/software/RPA_en.htm Design Tool for Liquid Rocket Engine Thermodynamic Analysis] is a computer program to predict the performance of the liquid-propellant rocket engines.
 
{{spacecraft propulsion}}
 
[[Category:Rocket propulsion]]
[[Category:Rocket propellants]]
 
[[ja:ロケットエンジンの推進剤#液体燃料ロケット]]

Retrieved from "https://en.wikipedia.org/wiki/Liquid_rocket_propellant"
 




Languages

 



This page is not available in other languages.
 

Wikipedia




Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Terms of Use

Desktop