Home  

Random  

Nearby  



Log in  



Settings  



Donate  



About Wikipedia  

Disclaimers  



Wikipedia





Radioisotope rocket: Difference between revisions





Article  

Talk  



Language  

Watch  

View history  

Edit  






Browse history interactively
 Previous editNext edit 
Content deleted Content added
VisualWikitext
cu section order, MOS:APPENDIX
Yobot (talk | contribs)
4,733,870 edits
m WP:CHECKWIKI error fixes + general fixes using AWB (7661)
Line 1:
The '''radioisotope rocket''' is a type of [[rocket engine]] that uses the heat generated by the decay of [[radioactive]] elements to heat a [[working fluid]], which is then exhausted through a rocket nozzle to produce [[thrust]]. They are similar in nature to the [[nuclear thermal rocket]]s such as [[NERVA]], but are considerably simpler and often have no moving parts.
 
The basic idea is a development of existing [[radioisotope thermoelectric generator]], or RTG, systems, in which the heat generated by decaying nuclear fuel is used to generate power. In the rocket application the generator is removed, and the working fluid is instead used to produce thrust directly. Temperatures of about 1500 to 2000°C are possible in this system, allowing for [[specific impulse]]s of about 700 to 800 seconds (7 to 8  kN·s/kg), about double that of the best chemical engines such as the [[LH2]]-[[LOX]] [[SSME]].
 
However the amount of power generated by such systems is typically fairly low. Whereas the full "active" reactor system in a nuclear thermal rocket can be expected to generate over a gigawatt, a radioisotope generator might get 5 &nbsp;kW. This means that the design, while highly efficient, can produce thrust levels of perhaps 1.3 to 1.5 N, making them useful only for thrusters. In order to increase the power for medium-duration missions, engines would typically use fuels with a short [[half-life]] such as [[polonium|Po 210]], as opposed to the typical RTG which would use a long half-life fuel such as [[plutonium]] in order to produce more constant power over longer periods of time. The even shorter half-life element [[fermium]] has also been suggested<ref>[http://pdf.aiaa.org/preview/CDReadyMSPACE06_1393/PV2006_7272.pdf AIAA meeting paper comparing fermium, polonium and plutonium as power sources]</ref>
 
Another drawback to the use of radioisotopes in rockets is an inability to change the operating power. The radioisotope constantly generates heat that must be safely dissipated when it is not heating a propellant. Reactors, on the other hand, can be throttled or shut down as desired.
 
[[TRW]] maintained a fairly active development program known as '''Poodle''' from 1961 to 1965, and today the systems are still often known as '''Poodle thrusters'''. The name was a play on the larger systems being developed under '''Project Rover''', which led to NERVA. In April 1965 they ran their testbed engine for 65 hours at about 1500°C, producing a specific impulse of 650 to 700 seconds (6.5 to 7 &nbsp;kN·s/kg).
 
The inadvertent construction of a radioisotope rocket is one of the suggested solutions to the [[Pioneer anomaly]]. The Pioneer space probes are powered by [[radioisotope thermal generator]]s located on the end of a long arm to keep their radiation away from the spacecraft electronics. In this position the back of the main radio dish is preferentially exposed, meaning that radiation (primarily infra-red) scattered by the dish would tend to be scattered to the rear of the spacecraft. This could lead to a ''tiny'' amount of net thrust being generated, although all calculations to date suggest it is not enough in itself to fully explain the effect.{{FactCitation needed|date=November 2008}}
 
A similar phenomenon occurred on the [[New Horizons]] spacecraft; photons (thermal infrared) from the RTG, reflected from the spacecraft's antenna, produced a very small thrust which propelled the spacecraft slightly off course.<ref>[http://pluto.jhuapl.edu/overview/piPerspective.php?page=piPerspective_05_21_2010 New Horizons official website article mentioning the thrust from the RTG]</ref>
Line 21:
*United States Patent 3315471; Direct cycle radioisotope rocket engine; 1967; Lee, Dailey Charles, Verdes, Estates Palos
*United States Patent 3306045; Radioisotope rocket; 1967; Buford Jr., William H. Thomas Jr., Arthur N
 
 
{{spacecraft propulsion}}
{{nuclear propulsion}}
 
{{DEFAULTSORT:Radioisotope Rocket}}
[[Category:Nuclear spacecraft propulsion]]
 

Retrieved from "https://en.wikipedia.org/wiki/Radioisotope_rocket"
 




Languages

 



This page is not available in other languages.
 

Wikipedia




Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Terms of Use

Desktop