Home  

Random  

Nearby  



Log in  



Settings  



Donate  



About Wikipedia  

Disclaimers  



Wikipedia





Zinc selenide





Article  

Talk  



Language  

Watch  

Edit  





Zinc selenide is the inorganic compound with the formula ZnSe. It is a lemon-yellow solid although most samples have a duller color due to the effects of oxidation. It is an intrinsic semiconductor with a band gap of about 2.70 eV at 25 °C (77 °F), equivalent to a wavelength of 459 nm. ZnSe occurs as the rare mineral stilleite, named after Hans Stille.

Zinc selenide
Zinc selenide
Names
Other names

Zinc selenide
Stilleite

Identifiers

CAS Number

3D model (JSmol)

  • wurtzite structure: Interactive image
  • wurtzite structure: Interactive image
  • ChemSpider
    ECHA InfoCard 100.013.873 Edit this at Wikidata
    EC Number
    • 215-259-7

    PubChem CID

    UNII

    CompTox Dashboard (EPA)

    • InChI=1S/Se.Zn

      Key: SBIBMFFZSBJNJF-UHFFFAOYSA-N

    • zincblende structure: [SeH+2]12[ZnH2-2][SeH+2]3[ZnH2-2][SeH+2]([ZnH-2]14)[ZnH-2]1[Se+2]5([ZnH-2]38)[Zn-2]26[SeH+2]2[ZnH-2]([Se+2]4)[SeH+2]1[ZnH2-2][SeH+2]3[ZnH-2]2[Se+2][ZnH-2]([SeH+2]6[ZnH-2]([SeH+2])[SeH+2]68)[SeH+2]([ZnH2-2]6)[ZnH-2]35

    • wurtzite structure: [ZnH2-2]1[Se+2]47[ZnH-2]2[Se+2][ZnH-2]3[Se+2]8([ZnH2-2][SeH+2]([ZnH2-2]4)[ZnH2-2]6)[ZnH-2]4[Se+2][ZnH-2]5[Se+2]6([ZnH2-2]6)[Zn-2]78[Se+2]78[ZnH-2]([SeH+2]69)[SeH+2]5[ZnH2-2][SeH+2]4[ZnH-2]7[SeH+2]3[ZnH2-2][SeH+2]2[ZnH-2]8[SeH+2]1[ZnH2-2]9

    • wurtzite structure: [ZnH2-2]1[SeH+2]([ZnH2-2]6)[ZnH2-2][SeH+2]7[ZnH-2]2[Se+2][Zn-2]3([Se+2][ZnH-2]9[Se+2]5)[Se+2]18[Zn-2]45[Se+2][ZnH-2]5[SeH+2]6[Zn-2]78[Se+2]78[ZnH2-2][SeH+2]5[ZnH2-2][Se+2]4([ZnH2-2][SeH+2]9[ZnH2-2]4)[ZnH-2]7[Se+2]34[ZnH2-2][SeH+2]2[ZnH2-2]8

    Properties

    Chemical formula

    ZnSe
    Molar mass 144.35 g/mol
    Appearance light yellow solid
    Density 5.27 g/cm3
    Melting point 1,525 °C (2,777 °F)

    Solubility in water

    negligible
    Band gap 2.82 eV (10 K)

    Refractive index (nD)

    2.67 (550 nm)
    2.40 (10.6 μm)
    Structure

    Crystal structure

    Zincblende (cubic)

    Lattice constant

    a = 566.8 pm

    Coordination geometry

    Tetrahedral (Zn2+)
    Tetrahedral (Se2−)
    Thermochemistry

    Std enthalpy of
    formation
    fH298)

    −177.6 kJ/mol
    Hazards
    GHS labelling:

    Pictograms

    GHS06: ToxicGHS08: Health hazardGHS09: Environmental hazard

    Signal word

    Danger

    Hazard statements

    H301, H331, H373, H410

    Precautionary statements

    P260, P261, P264, P270, P271, P273, P301+P310, P304+P340, P311, P314, P321, P330, P391, P403+P233, P405, P501
    Related compounds

    Other anions

    Zinc oxide
    Zinc sulfide
    Zinc telluride

    Other cations

    Cadmium selenide
    Mercury selenide

    Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

    checkY verify (what is checkY☒N ?)

    Infobox references

    Synthesis and properties

    edit

    ZnSe is available in both hexagonal (wurtzite) and cubic (zincblende) polymorphs. In both cases, the Zn2+ and Se2− sites are tetrahedral. The difference in the structures related to close packing motifs, hexagonal vs cubic.

    Cubic ZnSe is produced by treatment of an aqueous solution of zinc sulfate with hydrogen selenide:[1]

    ZnSO4 + H2Se → ZnSe + H2SO4

    Heating the cubic form gives hexagonal ZnSe.

    An alternative synthesis involves heating a mixture of zinc oxide, zinc sulfide, and selenium:

    2 ZnO + ZnS + 3 Se → 3 ZnSe + SO2

    It is a wide-bandgap semiconductor of the II-VI semiconductor group (since zinc and selenium belong to the 12th and 16th groups of the periodic table, respectively). The material can be n-type doped with, for instance, halogen elements. P-type doping is more difficult, but can be achieved by introducing gallium.

    Applications

    edit

    Reactions

    edit

    ZnSe is insoluble in water, but dissolves in concentrated hydrochloric acid.

    It can be deposited as a thin film by chemical vapour deposition techniques including MOVPE and vacuum evaporation.

    References

    edit
    1. ^ F. Wagenknecht; R. Juza (1963). "Zinc (II) Selenide". In G. Brauer (ed.). Handbook of Preparative Inorganic Chemistry, 2nd Ed. Vol. 2pages=1078. NY, NY: Academic Press.
  • ^ Sahbudin, U.K.; Wahid, M.H.A.; Poopalan, P.; Hambali, N.A.M.A.; Shahimin, M.M.; Ariffin, S.N.; Saidi, N.N.A.; Ramli, M.M. (2016). "ZnSe Light Emitting Diode Quantum Efficiency and Emission Characterization". Matec Web of Conferences. 78: 01114. doi:10.1051/matecconf/20167801114.
  • ^ Cr2+ excitation levels in ZnSe and ZnS, G. Grebe, G. Roussos and H.-J. Schulz, J. Phys. C: Solid State Phys. vol. 9 pp. 4511-4516 (1976) doi:10.1088/0022-3719/9/24/020
  • ^ https://web.archive.org/web/20190422005411/http://www.kayelaby.npl.co.uk/general_physics/2_5/2_5_8.html Kaye and Laby online at NPL via archive.org
  • ^ "Institute for Single Crystals - Materials and Products - AIIBVI - Passive Laser Optics Elements". iscrystals.com. Retrieved 2016-12-28.
  • edit

    Retrieved from "https://en.wikipedia.org/w/index.php?title=Zinc_selenide&oldid=1221411133"
     



    Last edited on 29 April 2024, at 19:44  





    Languages

     


    Afrikaans
    العربية
    تۆرکجه
    Deutsch
    Español
    فارسی
    Français
    ि
    Italiano
    Nederlands

    Português
    Русский
    Српски / srpski
    Srpskohrvatski / српскохрватски
    Українська


     

    Wikipedia


    This page was last edited on 29 April 2024, at 19:44 (UTC).

    Content is available under CC BY-SA 4.0 unless otherwise noted.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Terms of Use

    Desktop