Home  

Random  

Nearby  



Log in  



Settings  



Donate  



About Wikipedia  

Disclaimers  



Wikipedia





Carboxyglutamic acid





Article  

Talk  



Language  

Watch  

Edit  


(Redirected from Gamma-carboxyglutamate)
 


Carboxyglutamic acid (or the conjugate base, carboxyglutamate), is an uncommon amino acid introduced into proteins by a post-translational carboxylationofglutamic acid residues. This modification is found, for example, in clotting factors and other proteins of the coagulation cascade. This modification introduces an affinity for calcium ions. In the blood coagulation cascade, vitamin K is required to introduce γ-carboxylation of clotting factors II, VII, IX, X and protein Z.[1]

Carboxyglutamic acid
Names
Systematic IUPAC name

3-Aminopropane-1,1,3-tricarboxylic acid

Other names

γ-Carboxyglutamate

Identifiers

CAS Number

3D model (JSmol)

ChemSpider
ECHA InfoCard 100.054.607 Edit this at Wikidata

PubChem CID

UNII

CompTox Dashboard (EPA)

  • InChI=1/C6H9NO6/c7-3(6(12)13)1-2(4(8)9)5(10)11/h2-3H,1,7H2,(H,8,9)(H,10,11)(H,12,13)

    Key: UHBYWPGGCSDKFX-UHFFFAOYAH

  • O=C(O)C(C(=O)O)CC(N)C(=O)O

Properties

Chemical formula

C6H9NO6
Molar mass 191.14 g/mol
Density 1.649 g/mL
Boiling point 418 °C (784 °F; 691 K)

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Infobox references

Synthesis

edit

In the biosynthesis of γ-carboxyglutamic acid, the γ-proton on glutamic acid is abstracted, and CO2 is subsequently added. The reaction intermediate is a γ-glutamyl carbanion.

This reaction is catalyzed by a carboxylase that requires vitamin K as its cofactor. It is not exactly known how vitamin K participates, but it is hypothesized that a free cysteine residue in the carboxylase converts vitamin K into an active strong base that in turn abstracts a hydrogen from glutamic acid's γ-carbon. Then CO2 is added to the γ-carbon to form γ-carboxyglutamic acid.[2]

γ-Carboxyglutamic acid-rich (GLA) domain

edit

A number of γ-carboxyglutamate residues are present in the γ-carboxyglutamic acid-rich ("GLA") domain. This GLA domain is known to be found in over a dozen known proteins, including coagulation factors X, VII, IX, and XIV, vitamin K-dependent protein S and Z, prothrombin, transthyretin, osteocalcin, matrix Gla protein (MGP), inter-alpha trypsin inhibitor heavy chain H2, and growth arrest-specific protein 6 (GAS6). The Gla domain is responsible for high-affinity binding of calcium ions (Ca2+) to Gla proteins, which is often necessary for their conformation, and always necessary for their function.[3]

Role in coagulation

edit

γ-Carboxyglutamic acid residues play an important role in coagulation. The high-affinity calcium binding sites in the GLA domain of factor IX, which is a serine protease of the coagulation system, were found to partially mediate the binding of factor IXa to platelets and in factor-X activation.[4] In addition, upon mechanical injury to the blood vessel wall, a cell-associated tissue factor becomes exposed and initiates a series of enzymatic reactions localized on a membrane surface generally provided by cells and accumulating platelets. Gla residues partly govern the activation and binding of circulating blood-clotting enzymes and zymogens to this exposed cell membrane surface. Specifically, gla residues are needed in calcium binding and in exposing hydrophobic membrane binding regions to the cell bilayer. Lack of these gla residues results in impaired coagulation or even anticoagulation, which may lead to bleeding diathesis or thrombosis.[5] In addition, removal of calcium ion from these proteins with an organic chelator, such as citrate ion, causes their dysfunction, and prevents blood from coagulating. Thus, citrate addition to blood is the most common method of storing it in a liquid state between harvest and transfusion.

See also

edit

References

edit
  1. ^ J Stenflo, and J W Suttie (1977). "Vitamin K–dependent formation of γ-carboxyglutamic acid". Annual Review of Biochemistry. 46: 157–172. doi:10.1146/annurev.bi.46.070177.001105. PMID 332061.
  • ^ Furie, Bruce; Bouchard, Beth A.; Furie, Barbara C. (1999-03-15). "Vitamin K–dependent biosynthesis of γ-carboxyglutamic acid". Blood. 93 (6): 1798–1808. doi:10.1182/blood.V93.6.1798.406k22_1798_1808. ISSN 0006-4971. PMID 10068650.
  • ^ "Gamma-carboxyglutamic acid-rich (GLA) domain (IPR000294) < InterPro < EMBL-EBI". www.ebi.ac.uk. Retrieved 2015-12-22.
  • ^ Rawala-Sheikh, R.; Ahmad, S. S.; Monroe, D. M.; Roberts, H. R.; Walsh, P. N. (1992-01-15). "Role of γ-carboxyglutamic acid residues in the binding of factor IXa to platelets and in factor-X activation". Blood. 79 (2): 398–405. doi:10.1182/blood.V79.2.398.bloodjournal792398. ISSN 0006-4971. PMID 1730085.
  • ^ Kalafatis, M.; Egan, J. O.; van't Veer, C.; Mann, K. G. (1996-01-01). "Regulation and regulatory role of γ-carboxyglutamic acid containing clotting factors". Critical Reviews in Eukaryotic Gene Expression. 6 (1): 87–101. doi:10.1615/critreveukargeneexpr.v6.i1.60. ISSN 1045-4403. PMID 8882309.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Carboxyglutamic_acid&oldid=1176024139"
     



    Last edited on 18 September 2023, at 23:55  





    Languages

     


    تۆرکجه
    فارسی
    Français
    Galego


    Português
    Српски / srpski
    Srpskohrvatski / српскохрватски
    Suomi

     

    Wikipedia


    This page was last edited on 18 September 2023, at 23:55 (UTC).

    Content is available under CC BY-SA 4.0 unless otherwise noted.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Terms of Use

    Desktop