Home  

Random  

Nearby  



Log in  



Settings  



Donate  



About Wikipedia  

Disclaimers  



Wikipedia





Thermochemistry





Article  

Talk  



Language  

Watch  

Edit  


(Redirected from History of thermochemistry)
 


Thermochemistry is the study of the heat energy which is associated with chemical reactions and/or phase changes such as melting and boiling. A reaction may release or absorb energy, and a phase change may do the same. Thermochemistry focuses on the energy exchange between a system and its surroundings in the form of heat. Thermochemistry is useful in predicting reactant and product quantities throughout the course of a given reaction. In combination with entropy determinations, it is also used to predict whether a reaction is spontaneous or non-spontaneous, favorable or unfavorable.

Endothermic reactions absorb heat, while exothermic reactions release heat. Thermochemistry coalesces the concepts of thermodynamics with the concept of energy in the form of chemical bonds. The subject commonly includes calculations of such quantities as heat capacity, heat of combustion, heat of formation, enthalpy, entropy, and free energy.

The world's first ice-calorimeter, used in the winter of 1782–83, by Antoine Lavoisier and Pierre-Simon Laplace, to determine the heat evolved in various chemical changes; calculations which were based on Joseph Black's prior discovery of latent heat. These experiments mark the foundation of thermochemistry.

Thermochemistry is one part of the broader field of chemical thermodynamics, which deals with the exchange of all forms of energy between system and surroundings, including not only heat but also various forms of work, as well the exchange of matter. When all forms of energy are considered, the concepts of exothermic and endothermic reactions are generalized to exergonic reactions and endergonic reactions.

History

edit

Thermochemistry rests on two generalizations. Stated in modern terms, they are as follows:[1]

  1. Lavoisier and Laplace's law (1780): The energy change accompanying any transformation is equal and opposite to energy change accompanying the reverse process.[2]
  2. Hess' law of constant heat summation (1840): The energy change accompanying any transformation is the same whether the process occurs in one step or many.[3]

These statements preceded the first law of thermodynamics (1845) and helped in its formulation.

Thermochemistry also involves the measurement of the latent heatofphase transitions. Joseph Black had already introduced the concept of latent heat in 1761, based on the observation that heating ice at its melting point did not raise the temperature but instead caused some ice to melt.[4]

Gustav Kirchhoff showed in 1858 that the variation of the heat of reaction is given by the difference in heat capacity between products and reactants: dΔH / dT = ΔCp. Integration of this equation permits the evaluation of the heat of reaction at one temperature from measurements at another temperature.[5][6]

Calorimetry

edit

The measurement of heat changes is performed using calorimetry, usually an enclosed chamber within which the change to be examined occurs. The temperature of the chamber is monitored either using a thermometerorthermocouple, and the temperature plotted against time to give a graph from which fundamental quantities can be calculated. Modern calorimeters are frequently supplied with automatic devices to provide a quick read-out of information, one example being the differential scanning calorimeter.

Systems

edit

Several thermodynamic definitions are very useful in thermochemistry. A system is the specific portion of the universe that is being studied. Everything outside the system is considered the surroundings or environment. A system may be:

Processes

edit

A system undergoes a process when one or more of its properties changes. A process relates to the change of state. An isothermal (same-temperature) process occurs when temperature of the system remains constant. An isobaric (same-pressure) process occurs when the pressure of the system remains constant. A process is adiabatic when no heat exchange occurs.

See also

edit

References

edit
  1. ^ Perrot, Pierre (1998). A to Z of Thermodynamics. Oxford University Press. ISBN 0-19-856552-6.
  • ^ See page 290 of Outlines of Theoretical Chemistry by Frederick Hutton Getman (1918)
  • ^ Petrucci, Ralph H.; Harwood, William S.; Herring, F. Geoffrey (2002). General Chemistry (8th ed.). Prentice Hall. pp. 241–3. ISBN 0-13-014329-4.
  • ^ Chisholm, Hugh, ed. (1911). "Black, Joseph" . Encyclopædia Britannica. Vol. 4 (11th ed.). Cambridge University Press.
  • ^ Laidler K.J. and Meiser J.H., "Physical Chemistry" (Benjamin/Cummings 1982), p.62
  • ^ Atkins P. and de Paula J., "Atkins' Physical Chemistry" (8th edn, W.H. Freeman 2006), p.56
  • edit

    Retrieved from "https://en.wikipedia.org/w/index.php?title=Thermochemistry&oldid=1206372712#History"
     



    Last edited on 12 February 2024, at 00:11  





    Languages

     


    العربية
    Azərbaycanca

     / Bân-lâm-gú
    Беларуская
    Беларуская (тарашкевіца)
    Български
    Bosanski
    Català
    Čeština
    Deutsch
    Eesti
    Ελληνικά
    Español
    Esperanto
    Euskara
    فارسی
    Français
    Gaeilge

    Հայերեն
    ि
    Hrvatski
    Ido
    Bahasa Indonesia
    Italiano
    Jawa
    Қазақша
    Кыргызча
    Magyar
    مصرى
    Bahasa Melayu


    Norsk bokmål
    Occitan
    Polski
    Português
    Română
    Русский
    Shqip

    Simple English
    Slovenčina
    Slovenščina
    کوردی
    Српски / srpski
    Srpskohrvatski / српскохрватски
    Suomi
    Svenska
    Tagalog
    ி

    Türkçe
    Українська
    اردو
    Tiếng Vit


     

    Wikipedia


    This page was last edited on 12 February 2024, at 00:11 (UTC).

    Content is available under CC BY-SA 4.0 unless otherwise noted.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Terms of Use

    Desktop