Home  

Random  

Nearby  



Log in  



Settings  



Donate  



About Wikipedia  

Disclaimers  



Wikipedia





Perfusion





Article  

Talk  



Language  

Watch  

Edit  


(Redirected from Hypoperfusion)
 


Perfusion is the passage of fluid through the circulatory systemorlymphatic system to an organ or a tissue,[1] usually referring to the delivery of blood to a capillary bed in tissue. Perfusion may also refer to fixation via perfusion, used in histological studies. Perfusion is measured as the rate at which blood is delivered to tissue,[2] or volume of blood per unit time (blood flow) per unit tissue mass. The SI unit is m3/(s·kg)[citation needed], although for human organs perfusion is typically reported in ml/min/g.[3] The word is derived from the French verb perfuser, meaning to "pour over or through".[4] All animal tissues require an adequate blood supply for health and life. Poor perfusion (malperfusion), that is, ischemia, causes health problems, as seen in cardiovascular disease, including coronary artery disease, cerebrovascular disease, peripheral artery disease, and many other conditions.

ALindbergh perfusion pump, c. 1935, an early device for simulating natural perfusion

Tests verifying that adequate perfusion exists are a part of a patient's assessment process that are performed by medical or emergency personnel. The most common methods include evaluating a body's skin color, temperature, condition (dry/soft/firm/swollen/sunken/etc), and capillary refill.

During major surgery, especially cardiothoracic surgery, perfusion must be maintained and managed by the health professionals involved, rather than left to the body's homeostasis alone. As the lead surgeons are often too busy to handle all hemodynamic control by themselves, specialists called perfusionists manage this aspect. There are more than one hundred thousand perfusion procedures annually.[5]

Discovery

edit

In 1920, August Krogh was awarded the Nobel Prize in Physiology or Medicine for his discovering the mechanism of regulation of capillariesinskeletal muscle.[6][7] Krogh was the first to describe the adaptation of blood perfusion in muscle and other organs according to demands through the opening and closing of arterioles and capillaries.[citation needed]

Malperfusion

edit

Malperfusion can refer to any type of incorrect perfusion though it usually refers to hypoperfusion. The meaning of the terms "overperfusion" and "underperfusion" is relative to the average level of perfusion that exists across all the tissues in an individual body. Perfusion levels also differ from person to person depending on metabolic demand.[citation needed]

Examples follow:[citation needed]

Overperfusion and underperfusion should not be confused with hypoperfusion and hyperperfusion, which relate to the perfusion level relative to a tissue's current need to meet its metabolic needs. For example, hypoperfusion can be caused when an arteryorarteriole that supplies blood to a volume of tissue becomes blocked by an embolus, causing either no blood or at least not enough blood to reach the tissue. Hyperperfusion can be caused by inflammation, producing hyperemia of a body part. Malperfusion, also called poor perfusion, is any type of incorrect perfusion. There is no official or formal dividing line between hypoperfusion and ischemia; sometimes the latter term refers to zero perfusion, but often it refers to any hypoperfusion that is bad enough to cause necrosis.[citation needed]

Measurement

edit

In equations, the symbol Q is sometimes used to represent perfusion when referring to cardiac output. However, this terminology can be a source of confusion since both cardiac output and the symbol Q refer to flow (volume per unit time, for example, L/min), whereas perfusion is measured as flow per unit tissue mass (mL/(min·g)).[citation needed]

Microspheres

edit

Microspheres that are labeled with radioactive isotopes have been widely used to measure perfusion since the 1960s. Radioactively labeled particles are injected into the test subject and a radiation detector measures radioactivity in tissues of interest.[8] Microspheres are used in radionuclide angiography, a method of diagnosing heart problems.

In the 1990s, methods for using fluorescent microspheres became a common substitute for radioactive particles.[9]

Nuclear medicine

edit

Perfusion of various tissues can be readily measured in vivo with nuclear medicine methods which are mainly positron emission tomography (PET) and single photon emission computed tomography (SPECT).[citation needed] Various radiopharmaceuticals targeted at specific organs are also available, some of the most common are:[citation needed]

Magnetic resonance imaging

edit

Two main categories of magnetic resonance imaging (MRI) techniques can be used to measure tissue perfusion in vivo.

Computed tomography (CT)

edit

Brain perfusion (more correctly transit times) can be estimated with contrast-enhanced computed tomography.[12]

Thermal diffusion

edit

Perfusion can be determined by measuring the total thermal diffusion and then separating it into thermal conductivity and perfusion components.[13] rCBF is usually measured continuously in time. It is necessary to stop the measurement periodically to cool down and reassess the thermal conductivity.[citation needed]

See also

edit

References

edit
  1. ^ American Psychological Association (APA): perfusion. (n.d.). Dictionary.com Unabridged (v 1.1). Retrieved March 20, 2008, from Dictionary.com website: http://dictionary.reference.com/browse/perfusion
  • ^ Thomas DL, Lythgoe MF, Pell GS, Calamante F, Ordidge RJ (2000). "The measurement of diffusion and perfusion in biological systems using magnetic resonance imaging". Phys Med Biol. 45 (8): R97-138. doi:10.1088/0031-9155/45/8/201. PMID 10958179.
  • ^ Engblom H, Xue H, Akil S, Carlsson M, Hindorf C, Oddstig J, Hedeer F, Hansen MS, Aletras AH, Kellman P, Arheden H (2017). "Fully quantitative cardiovascular magnetic resonance myocardial perfusion ready for clinical use: a comparison between cardiovascular magnetic resonance imaging and positron emission tomography". J Cardiovasc Magn Reson. 19 (1): 78. doi:10.1186/s12968-017-0388-9. PMC 5648469. PMID 29047385.
  • ^ "Perfusion > What is Perfusion?". Cardiovascular Perfusion Forum.
  • ^ "Perfusion > Perfusion Services". Specialty Care Services Group. Archived from the original on 2018-12-17. Retrieved 2017-01-02.
  • ^ Larsen, E. H. (2007). "August Krogh (1874–1949): 1920 Nobel Prize". Ugeskrift for Laeger. 169 (35): 2878. PMID 17877986.
  • ^ Sulek, K. (1967). "Nobel prize for August Krogh in 1920 for his discovery of regulative mechanism in the capillaries". Wiadomosci Lekarskie. 20 (19): 1829. PMID 4870667.
  • ^ Studies of the Circulation with Radioactive Microspheres., Wagner et al, Invest. Radiol., 1969. 4(6): p. 374-386.
  • ^ "Fluorescent Microspheres" (PDF). Fluorescent Microsphere Resource Center. Archived from the original (PDF) on 2012-10-02.
  • ^ Huettel, S. A.; Song, A. W.; McCarthy, G. (2009), Functional Magnetic Resonance Imaging (2 ed.), Massachusetts: Sinauer, ISBN 978-0-87893-286-3
  • ^ Detre, John A.; Rao, Hengyi; Wang, Danny J. J.; Chen, Yu Fen; Wang, Ze (2012-05-01). "Applications of arterial spin labeled MRI in the brain". Journal of Magnetic Resonance Imaging. 35 (5): 1026–1037. doi:10.1002/jmri.23581. ISSN 1522-2586. PMC 3326188. PMID 22246782.
  • ^ L. Axel. Cerebral blood flow determination by rapid-sequence computed-tomography: theoretical analysis. Radiology 137: 679–686, December 1980
  • ^ Vajkoczy P, Roth H, Horn P, et al. (August 2000). "Continuous monitoring of regional cerebral blood flow: experimental and clinical validation of a novel thermal diffusion microprobe". Journal of Neurosurgery. 93 (2): 265–74. doi:10.3171/jns.2000.93.2.0265. PMID 10930012. S2CID 30375395.
  • edit

    Retrieved from "https://en.wikipedia.org/w/index.php?title=Perfusion&oldid=1216929548#Malperfusion"
     



    Last edited on 2 April 2024, at 20:14  





    Languages

     


    العربية
    Български
    Bosanski
    Català
    Deutsch
    Español
    فارسی
    Français

    Italiano
    עברית
    Nederlands
    Polski
    Português
    Română
    Русский
    Svenska

    Türkçe
    Українська
     

    Wikipedia


    This page was last edited on 2 April 2024, at 20:14 (UTC).

    Content is available under CC BY-SA 4.0 unless otherwise noted.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Terms of Use

    Desktop