Home  

Random  

Nearby  



Log in  



Settings  



Donate  



About Wikipedia  

Disclaimers  



Wikipedia





Interglacial





Article  

Talk  



Language  

Watch  

Edit  


(Redirected from Interglaciation)
 


Aninterglacial period (or alternatively interglacial, interglaciation) is a geological interval of warmer global average temperature lasting thousands of years that separates consecutive glacial periods within an ice age. The current Holocene interglacial began at the end of the Pleistocene, about 11,700 years ago.

Shows the pattern of temperature and ice volume changes associated with recent glacials and interglacials

Pleistocene

edit

During the 2.5 million years of the Pleistocene, numerous glacials, or significant advances of continental ice sheets, in North America and Europe, occurred at intervals of approximately 40,000 to 100,000 years. The long glacial periods were separated by more temperate and shorter interglacials.

During interglacials, such as the present one, the climate warms and the tundra recedes polewards following the ice sheets. Forests return to areas that once supported tundra vegetation. Interglacials are identified on land or in shallow epicontinental seas by their paleontology. Floral and faunal remains of species pointing to temperate climate and indicating a specific age are used to identify particular interglacials. Commonly used are mammalian and molluscan species, pollen and plant macro-remains (seeds and fruits). However, many other fossil remains may be helpful: insects, ostracods, foraminifera, diatoms, etc. Recently, ice cores and ocean sediment cores provide more quantitative and accurately-dated evidence for temperatures and total ice volumes.

Interglacials and glacials coincide with cyclic changes in Earth's orbit. Three orbital variations contribute to interglacials. The first is a change in Earth's orbit around the Sun, or eccentricity. The second is a shift in the tilt of Earth's axis, or obliquity. The third is the wobbling motion of Earth's axis, or precession.[1]

In the Southern Hemisphere, warmer summers occur when the lower-half of Earth is tilted toward the Sun and the planet is nearest the Sun in its elliptical orbit. Cooler summers occur when Earth is farthest from the Sun during the Southern Hemisphere summer. Such effects are more pronounced when the eccentricity of the orbit is large. When the obliquity is large, seasonal changes are more extreme.[2]

Interglacials are a useful tool for geological mapping and for anthropologists, as they can be used as a dating method for hominid fossils.[3]

Brief periods of milder climate that occurred during the last glacial are called interstadials. Most, but not all, interstadials are shorter than interglacials. Interstadial climates may have been relatively warm, but not necessarily. Because the colder periods (stadials) have often been very dry, wetter (not necessarily warmer) periods have been registered in the sedimentary record as interstadials as well.

The oxygen isotope ratio obtained from seabed sediment core samples, a proxy for the average global temperature, is an important source of information for changes in Earth's climate.

An interglacial optimum, or climatic optimum of an interglacial, is the period within an interglacial that experienced the most 'favourable' climate and often occurs during the middle of that interglacial. The climatic optimum of an interglacial both follows and is followed by phases within the same interglacial that experienced a less favourable climate (but still a 'better' climate than the one during the preceding or succeeding glacials). During an interglacial optimum, sea levels rise to their highest values, but not necessarily exactly at the same time as the climatic optimum.

Specific interglacials

edit

The last six interglacials are:

See also

edit

References

edit
  1. ^ Eldredge, S. "Ice Ages – What are they and what causes them?". Utah Geological Survey. Retrieved 2 March 2013.
  • ^ Rieke, G. "Long Term Climate".
  • ^ Kottak, Conard Phillip (2005). Window on Humanity. New York: McGraw-Hill. ISBN 978-0-07-289028-0.
  • ^ Kopp, R.; et al. (2009). "Probabilistic assessment of sea level during the last interglacial stage". Nature. 462 (7275): 863–867. arXiv:0903.0752. doi:10.1038/nature08686. PMID 20016591. S2CID 10676558. Retrieved 20 Dec 2018.
  •   Evolutionary biology
  •   Geology
  •   Paleontology

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Interglacial&oldid=1213572288"
     



    Last edited on 13 March 2024, at 21:10  





    Languages

     


    Alemannisch
    العربية
    Azərbaycanca
    Čeština
    Dansk
    Deutsch
    Eesti
    Español
    فارسی
    Français
    Frysk

    ि
    Bahasa Indonesia
    Íslenska
    Italiano

    Lietuvių
    Magyar
    Nederlands

    Norsk bokmål
    Norsk nynorsk
    Oʻzbekcha / ўзбекча
    Polski
    Português
    Română
    Русский
    Slovenčina
    Suomi
    Svenska
    Тоҷикӣ
    Türkçe
    Українська
    Tiếng Vit

     

    Wikipedia


    This page was last edited on 13 March 2024, at 21:10 (UTC).

    Content is available under CC BY-SA 4.0 unless otherwise noted.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Terms of Use

    Desktop