Home  

Random  

Nearby  



Log in  



Settings  



Donate  



About Wikipedia  

Disclaimers  



Wikipedia





Antenna array





Article  

Talk  



Language  

Watch  

Edit  


(Redirected from Planar array)
 


Anantenna array (orarray antenna) is a set of multiple connected antennas which work together as a single antenna, to transmit or receive radio waves. The individual antennas (called elements) are usually connected to a single receiverortransmitterbyfeedlines that feed the power to the elements in a specific phase relationship. The radio waves radiated by each individual antenna combine and superpose, adding together (interfering constructively) to enhance the power radiated in desired directions, and cancelling (interfering destructively) to reduce the power radiated in other directions. Similarly, when used for receiving, the separate radio frequency currents from the individual antennas combine in the receiver with the correct phase relationship to enhance signals received from the desired directions and cancel signals from undesired directions. More sophisticated array antennas may have multiple transmitter or receiver modules, each connected to a separate antenna element or group of elements.

A common type of array antenna, a reflective array UHF television antenna. This example consists of eight dipole driven elements mounted in front of a wire screen reflector. The X-shaped dipoles give it a wide bandwidth to cover both the VHF (174–216 MHz) and UHF (470–700 MHz) TV bands. It has a gain of 5 dB VHF and 12 dB UHF and an 18 dB front-to-back ratio.
Large planar array antenna of a VHF Russian mobile air defense radar, the Nebo-M. It consists of 175 folded dipole antennas. An early phased array, the antenna radiated a vertical fan-shaped beam which could be swept horizontally across the airspace in front of the antenna.

An antenna array can achieve higher gain (directivity), that is a narrower beam of radio waves, than could be achieved by a single element. In general, the larger the number of individual antenna elements used, the higher the gain and the narrower the beam. Some antenna arrays (such as military phased array radars) are composed of thousands of individual antennas. Arrays can be used to achieve higher gain, to give path diversity (also called MIMO)[1] which increases communication reliability, to cancel interference from specific directions, to steer the radio beam electronically to point in different directions, and for radio direction finding (RDF).[2]

The term antenna array most commonly means a driven array consisting of multiple identical driven elements all connected to the receiver or transmitter. A parasitic array consists of a single driven element connected to the feedline, and other elements which are not, called parasitic elements. It is usually another name for a Yagi–Uda antenna.

Aphased array usually means an electronically scanned array; a driven array antenna in which each individual element is connected to the transmitter or receiver through a phase shifter controlled by a computer. The beam of radio waves can be steered electronically to point instantly in any direction over a wide angle, without moving the antennas. However the term "phased array" is sometimes used to mean an ordinary array antenna.[2]

Principle

edit

From the Rayleigh criterion, the directivity of an antenna, the angular width of the beam of radio waves it emits, is proportional to the wavelength of the radio waves divided by the width of the antenna. Small antennas around one wavelength in size, such as quarter-wave monopoles and half-wave dipoles, don't have much directivity (gain); they are omnidirectional antennas which radiate radio waves over a wide angle. To create a directional antenna (high gain antenna), which radiates radio waves in a narrow beam, two general techniques can be used:

One technique is to use reflection by large metal surfaces such as parabolic reflectorsorhorns, or refraction by dielectric lenses to change the direction of the radio waves, to focus the radio waves from a single low gain antenna into a beam. This type is called an aperture antenna. A parabolic dish is an example of this type of antenna.

A second technique is to use multiple antennas which are fed from the same transmitter or receiver; this is called an array antenna, or antenna array. If the currents are fed to the antennas with the proper phase, due to the phenomenon of interference the spherical waves from the individual antennas combine (superpose) in front of the array to create plane waves, a beam of radio waves traveling in a specific direction. In directions in which the waves from the individual antennas arrive in phase, the waves add together (constructive interference) to enhance the power radiated. In directions in which the individual waves arrive out of phase, with the peak of one wave coinciding with the valley of another, the waves cancel (destructive interference) reducing the power radiated in that direction. Similarly, when receiving, the oscillating currents received by the separate antennas from radio waves received from desired directions are in phase and when combined in the receiver reinforce each other, while currents from radio waves received from other directions are out of phase and when combined in the receiver cancel each other.

The radiation pattern of such an antenna consists of a strong beam in one direction, the main lobe, plus a series of weaker beams at different angles called sidelobes, usually representing residual radiation in unwanted directions. The larger the width of the antenna and the greater the number of component antenna elements, the narrower the main lobe, and the higher the gain which can be achieved, and the smaller the sidelobes will be.

Arrays in which the antenna elements are fed in phase are broadside arrays; the main lobe is emitted perpendicular to the plane of the elements.

The largest array antennas are radio interferometers used in the field of radio astronomy, in which multiple radio telescopes consisting of large parabolic antennas are linked together into an antenna array, to achieve higher resolution. Using the technique called aperture synthesis such an array can have the resolution of an antenna with a diameter equal to the distance between the antennas. In the technique called Very Long Baseline Interferometry (VLBI) dishes on separate continents have been linked, creating "array antennas" thousands of miles in size.

Types

edit

Most array antennas can be divided into two classes based on how the component antennas' axis relates to the radiation direction.

There are also arrays (such as phased arrays) which don't belong to either of these categories, in which the direction of radiation is at some other angle to the antenna axis.

Array antennas can also be categorized by how the element antennas are arranged:

Periodic Arrays

edit

Let us consider a linear array whose elements are arranged along the x-axis of an orthogonal Cartesian reference system. It is assumed that radiators have the same orientation and the same polarization of the electric field. Based on this, the array factor can be written as follows[4]

 

where   is the number of antenna elements,   is the wavenumber,   and   (in meters) are the complex excitation coefficient and the position of the n-th radiator, respectively,  , with   and   being the zenith angle and azimuth angle, respectively. If the spacing between adjacent elements is constant, then it can be written that  , and the array is said to be periodic. The array is periodic both spatially (physically) and in the variable  . For example, if  , with   being the wavelength, then the magnitude of the array factor has a period, in the domain of  , equal to  . It is worth emphasising that   is an auxiliary variable. In fact, from a physical point of view, the values of   that are of interest for radiative purposes fall in the interval  , which is associated with the values of   and  . In this case, the interval [-1,1] is called visible space. As shown further, if the definition of the variable   changes, the extent of the visible space also changes accordingly.

Now, suppose that the excitation coefficients are positive real variables. In this case, always in the domain of  , the array factor magnitude has a main lobe with maximum value at  , called mainlobe, several secondary lobes lower than the mainlobe, called sidelobes and mainlobe replicas called grating-lobes. Grating lobes are a source of disadvantages in both transmission and reception. In fact, in transmission, they can lead to radiation in unwanted directions, while, in reception, they can be a source of ambiguity since the desired signal entering the mainlobe region could be strongly disturbed by other signals (unwanted interfering signals) entering the regions of the various grating lobes. Therefore, in periodic arrays, the spacing between adjacent radiators must not exceed a specific value to prevent the appearance of grating lobes (in the visible space)in the visible space), the spacing between adjacent radiators must not exceed a specific value. For example, as seen previously, the first grating lobes for   occur in  . So, in this case, there are no problems since, in this way, the grating lobes are outside the interval [-1,1].

Aperiodic Arrays

edit

As seen above, when the spacing is constant between adjacent radiators, the array factor is characterized by the presence of grating lobes. In the literature, it has been amply demonstrated that to destroy the array factor's periodicity, the same array's geometry must also be made aperiodic.[5] It is possible to act on the positions of the radiators so that these positions are not commensurable with each other. Several methods have been developed to synthesize arrays in which also the positions represent further degrees of freedom (unknowns). There are both deterministic[6] and probabilistic[7][8] methodologies. Since the probabilistic theory of aperiodic arrays is a sufficiently systematised theory, with a strong general methodological basis, let us first concentrate on describing its peculiarities.


Suppose that the radiators positions,  , are independent and identically distributed random variables whose support coincides with the whole array aperture. Consequently, the array factor is a stochastic process, whose mean is as follows[7]


 


Design of antenna arrays

edit

In an antenna array providing a fixed radiation pattern, we may consider that the feed network is a part of the antenna array. Thus, the antenna array has a single port. Narrow beams can be formed, provided the phasing of each element of the array is appropriate. If, in addition, the amplitude of the excitation received by each element (during emission) is also well chosen, it is possible to synthesize a single-port array having a radiation pattern that closely approximates a specified pattern.[4] Many methods have been developed for array pattern synthesis. Additional issues to be considered are matching, radiation efficiency and bandwidth.

The design of an electronically steerable antenna array is different, because the phasing of each element can be varied, and possibly also the relative amplitude for each element. Here, the antenna array has multiple ports, so that the subject matters of matching and efficiency are more involved than in the single-port case. Moreover, matching and efficiency depend on the excitation, except when the interactions between the antennas can be ignored.

An antenna array used for spatial diversity and/or spatial multiplexing (which are different types of MIMO radio communication) always has multiple ports.[9] It is intended to receive independent excitations during emission, and to deliver more or less independent signals during reception. Here also, the subject matters of matching and efficiency are involved, especially in the case of an antenna array of a mobile device (see chapter 10 of [9]), since, in this case, the surroundings of the antenna array influence its behavior, and vary over time. Suitable matching metrics and efficiency metrics take into account the worst possible excitations.[10]

See also

edit

References

edit
  1. ^ Poole, Ian (2016). "What is MIMO? Multiple Input Multiple Output Tutorial". Antennas and propagation. Radio-electronics.com (Adrio Communications. Retrieved February 23, 2017.
  • ^ a b Bevelacqua, Peter (2016). "Array Antennas". Antenna-theory.com. Retrieved February 23, 2017.
  • ^ Poole, Ian (2016). "Smart Antennas Tutorial". Antennas and propagation. Radio-electronics.com (Adrio Communications). Retrieved February 23, 2017.
  • ^ a b Collin, Robert E. (1985). Antennas and Radiowave Propagation. McGraw-Hill. ISBN 0-07-011808-6.
  • ^ Steinberg, B. (1972). "The peak sidelobe of the phased array having randomly located elements". IEEE Transactions on Antennas and Propagation. 20 (2): 129–136. Bibcode:1972ITAP...20..129S. doi:10.1109/TAP.1972.1140162. ISSN 0096-1973.
  • ^ Ishimaru, A. (1962). "Theory of unequally-spaced arrays". IRE Transactions on Antennas and Propagation. 10 (6): 691–702. Bibcode:1962ITAP...10..691I. doi:10.1109/TAP.1962.1137952. ISSN 0096-1973.
  • ^ a b Lo, Y. (1964). "A mathematical theory of antenna arrays with randomly spaced elements". IEEE Transactions on Antennas and Propagation. 12 (3): 257–268. Bibcode:1964ITAP...12..257L. doi:10.1109/TAP.1964.1138220. ISSN 0096-1973.
  • ^ Skolnik, M.; Sherman, J.; Ogg, F. (1964). "Statistically designed density-tapered arrays". IEEE Transactions on Antennas and Propagation. 12 (4): 408–417. Bibcode:1964ITAP...12..408S. doi:10.1109/TAP.1964.1138239. ISSN 0096-1973.
  • ^ a b Sibille, Alain; Oestges, Claude; Zanella, Alberto (2011). MIMO: From Theory to Implementation. Elsevier. ISBN 978-0-12-382194-2.
  • ^ Broydé, F.; Clavelier, E. (January 2022). "The Radiation and Transducer Efficiencies of a Multiport Antenna Array". Excem Research Papers in Electronics and Electromagnetics (4). doi:10.5281/zenodo.5816837.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Antenna_array&oldid=1198004119"
     



    Last edited on 22 January 2024, at 18:44  





    Languages

     


    Català
    فارسی
    Français
    Հայերեն
    ि
    Italiano
    Қазақша

    Polski
    Русский
    Українська
    اردو
     

    Wikipedia


    This page was last edited on 22 January 2024, at 18:44 (UTC).

    Content is available under CC BY-SA 4.0 unless otherwise noted.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Terms of Use

    Desktop