Home  

Random  

Nearby  



Log in  



Settings  



Donate  



About Wikipedia  

Disclaimers  



Wikipedia





Wing configuration





Article  

Talk  



Language  

Watch  

Edit  


(Redirected from Straight wing)
 


The wing configuration of a fixed-wing aircraft (including both gliders and powered aeroplanes) is its arrangement of lifting and related surfaces.

The Spitfire wing may be classified as: "a conventional low-wing cantilever monoplane with unswept elliptical wings of moderate aspect ratio and slight dihedral".

Aircraft designs are often classified by their wing configuration. For example, the Supermarine Spitfire is a conventional low wing cantilever monoplane of straight elliptical planform with moderate aspect ratio and slight dihedral.

Many variations have been tried. Sometimes the distinction between them is blurred, for example the wings of many modern combat aircraft may be described either as cropped compound deltas with (forwards or backwards) swept trailing edge, or as sharply tapered swept wings with large leading edge root extensions (or LERX). Some are therefore duplicated here under more than one heading. This is particularly so for variable geometry and combined (closed) wing types.

Most of the configurations described here have flown (if only very briefly) on full-size aircraft. A few theoretical designs are also notable.

Note on terminology: Most fixed-wing aircraft have left hand and right hand wings in a symmetrical arrangement. Strictly, such a pair of wings is called a wing plane or just plane. However, in certain situations it is common to refer to a plane as a wing, as in "a biplane has two wings", or alternatively to refer to the whole thing as a wing, as in "a biplane wing has two planes". Where the meaning is clear, this article follows common usage, only being more precise where needed to avoid real ambiguity or incorrectness.

Number and position of main planes

edit

Fixed-wing aircraft can have different numbers of wings:

 
Low wing
 
Mid wing
 
Shoulder wing
 
High wing
 
Parasol wing

A fixed-wing aircraft may have more than one wing plane, stacked one above another:

 
Biplane
 
Unequal-span biplane
 
Sesquiplane
 
Inverted sesquiplane
 
Busemann biplane in cross-section
 
Triplane
 
Quadruplane
 
Multiplane

Astaggered design has the upper wing slightly forward of the lower. Long thought to reduce the interference caused by the low pressure air over the lower wing mixing with the high pressure air under the upper wing; however the improvement is minimal and its primary benefit is to improve access to the fuselage. It is common on many successful biplanes and triplanes. Backwards stagger is also seen in a few examples such as the Beechcraft Staggerwing.

 
Unstaggered biplane
 
Forwards stagger
 
Backwards stagger
 
Cruciform wing weapon
 
Cruciform rotor wing or X wing rotor

Wing support

edit

To support itself a wing has to be rigid and strong and consequently may be heavy. By adding external bracing, the weight can be greatly reduced. Originally such bracing was always present, but it causes a large amount of drag at higher speeds and has not been used for faster designs since the early 1930s.

The types are:

 
 
Cantilever
 
 
Strut braced
 
 
Wire braced
A braced multiplane may have one or more "bays", which are the compartments created by adding interplane struts; the number of bays refers to one side of the aircraft's wing panels only. For example, the de Havilland Tiger Moth is a single-bay biplane where the Bristol F.2 Fighter is a two-bay biplane.[3]
 
Single-bay biplane
 
Two-bay biplane
 
Box wing
 
Annular box wing
 
Cylindrical wing
 
Joined wing
 
Flat annular wing
 
Rhomboidal wing

Wings can also be characterised as:

 
Rigid delta wing
 
Flexible Rogallo wing

Wing planform

edit

The wing planform is the silhouette of the wing when viewed from above or below.

See also variable geometry types which vary the wing planform during flight.

Aspect ratio

edit

The aspect ratio is the span divided by the mean or average chord.[10] It is a measure of how long and slender the wing appears when seen from above or below.

 
Low aspect ratio
 
Moderate aspect ratio
 
High aspect ratio

Most variable geometry configurations vary the aspect ratio in some way, either deliberately or as a side effect.

Chord variation along span

edit

The wing chord may be varied along the span of the wing, for both structural and aerodynamic reasons.

 
Constant chord
 
Tapered (Trapezoidal)
 
Reverse tapered
 
Compound tapered
 
Constant chord,
tapered outer
 
Elliptical
 
Semi-elliptical
 
Birdlike
 
Batlike
 
Circular
 
Flying saucer
 
Flat annular
 
Tailless delta
 
Tailed delta
 
Cropped delta
 
Compound delta
 
Ogival delta

Wing sweep

edit

Wings may be swept back, or occasionally forwards, for a variety of reasons. A small degree of sweep is sometimes used to adjust the centre of lift when the wing cannot be attached in the ideal position for some reason, such as a pilot's visibility from the cockpit. Other uses are described below.

Some types of variable geometry vary the wing sweep during flight:

 
Straight
 
Swept
 
Forward swept
 
Variable sweep
(swing-wing)
 
Variable-geometry
oblique wing

Sweep variation along span

edit

The angle of a swept wing may also be varied, or cranked, along the span:

 
Crescent
 
Cranked arrow
 
M-wing
 
W-wing

Asymmetrical

edit

On a few asymmetrical aircraft the left and right hand sides are not mirror-images of each other:

     
Asymmetrical Torque counteraction
by asymmetric span
Variable-geometry
oblique wing

Tailplanes and foreplanes

edit

The classic aerofoil section wing is unstable in pitch, and requires some form of horizontal stabilizing surface. Also it cannot provide any significant pitch control, requiring a separate control surface (elevator) mounted elsewhere - usually on the horizontal stabilizer.

 
Conventional tail
 
Canard
 
Tandem
 
Three surface
 
Outboard tail
 
Tailless

Dihedral and anhedral

edit

Angling the wings up or down spanwise from root to tip can help to resolve various design issues, such as stability and control in flight.

Some biplanes have different degrees of dihedral/anhedral on different wings. The Sopwith Camel had a flat upper wing and dihedral on the lower wing, while the Hanriot HD-1 had dihedral on the upper wing but none on the lower.

 
Dihedral
 
 
Anhedral
 
 
Biplane with dihedral
on both wings
 
Biplane with dihedral
on lower wing

In a crankedorpolyhedral wing the dihedral angle varies along the span. (Note that the description "cranked" varies in usage.[24][25][26][27] See also Cranked arrow planform.)

 
Gull wing
 
Inverted gull wing
 
Dihedral tips
 
Anhedral tips
 
Channel wing

Wings vs. bodies

edit

Some designs have no clear join between wing and fuselage, or body. This may be because one or other of these is missing, or because they merge into each other:

 
 
Flying wing
 
 
Blended body
 
 
Lifting body

Some designs may fall into multiple categories depending on interpretation, for example many UAVs or drones can be seen either as a tailless blended wing-body or as a flying wing with a deep centre chord.

Variable geometry

edit

Avariable geometry aircraft is able to change its physical configuration during flight.

Some types of variable geometry craft transition between fixed wing and rotary wing configurations. For more about these hybrids, see powered lift.

Variable planform

edit
 
Variable sweep
(swing-wing)
 
Variable-geometry
oblique wing
 
Telescoping wing
 
 
Extending wing
 
 
Folding wing

Variable section

edit
 
Variable incidence
wing
 

Variable camber
aerofoil
 

Variable thickness
aerofoil

Polymorphism

edit

Apolymorphic wing is able to change the number of planes in flight. The Nikitin-Shevchenko IS "folding fighter" prototypes were able to morph between biplane and monoplane configurations after takeoff by folding the lower wing up into a cavity in the underside of the upper wing.

The slip wing is a variation on the polymorphic idea, in which a low-wing monoplane is fitted with a second detachable "slip" wing above it to assist takeoff. The upper wing is then released and discarded once in the air. The idea was first flown on the experimental Hillson Bi-mono.

 
Polymorphic wing
 
Slip wing

Minor independent surfaces

edit
 
Various minor surfaces

Aircraft may have additional minor aerodynamic surfaces. Some of these are treated as part of the overall wing configuration:

Additional minor features

edit

Additional minor features may be applied to an existing aerodynamic surface such as the main wing:

High lift

edit
 
High-lift devices

High-lift devices maintain lift at low speeds and delay the stall to allow slower takeoff and landing speeds:

Spanwise flow control

edit
 
Spanwise flow control device

On a swept wing, air tends to flow sideways as well as backwards and reducing this can improve the efficiency of the wing:

Vortex creation

edit
 
Vortex devices

Vortex devices maintain airflow at low speeds and delay the stall, by creating a vortex which re-energises the boundary layer close to the wing.

Drag reduction

edit
 
Drag-reduction devices

See also

edit

References

edit

Notes

edit
  1. ^ Taylor, J. (Ed.), Jayne's all the world's aircraft 1980–81, Jane's (1980)
  • ^ Green, W.; Warplanes of the second world war, Vol. 5, Flying boats, Macdonald (1962), p.131
  • ^ Taylor, 1990. p. 76
  • ^ Kroo, I. (2005), "Nonplanar Wing Concepts For Increased Aircraft Efficiency", VKI Lecture Series on Innovative Configurations and Advanced Concepts for Future Civil Aircraft June 6–10, 2005
  • ^ "Nonplanar Wings: Closed Systems". Aero.stanford.edu. Archived from the original on 11 August 2011. Retrieved 31 March 2012.
  • ^ Airliners.net, Lee Richards Annular, 2012, retrieved 31 March 2012
  • ^ a b Henderson, William P. and Huffman, Jarrett K.; Aerodynamic characteristics of a tandem wing configuration of a Mach number of 0.30, NASA, October 1975.
  • ^ Marcel, Arthur; The Ligeti Stratos, ultralightaircraftaustralia.com, 2024. (retrieved 13 May 2022).
  • ^ Angelucco, E. and Matrciardi, P.; World Aircraft Origins-World War 1, Sampson Low, 1977
  • ^ Kermode (1972), Chapter 3, p. 103.
  • ^ Garrison, Peter (1 January 2003). "Rectangular Wings | Flying Magazine". Flyingmag.com. Archived from the original on 17 July 2022. Retrieved 17 July 2022. Bergey closes with the following advice: "When you walk past a Cherokee or an RV or any of the thousands of general aviation aircraft with Hershey Bar wings, flash them a friendly smile. Let them know you appreciate the high cruise efficiency of their almost ideal spanwise lift distributions. And their forgiving stall characteristics."
  • ^ Martin, Swayne (8 July 2016). "6 Wing Designs That Every Pilot Should Recognize". boldmethod.com. Archived from the original on 17 July 2022. Retrieved 17 July 2022. you can see how rectangular the Piper PA-23 Aztec's wing really is. There's a reason why they call it the "Hershey Bar" wing.
  • ^ Tom Benson; Wing Area, NASA
  • ^ Ilan Kroo. AA241 Aircraft Design: Synthesis and Analysis Wing Geometry Definitions, Archived 13 October 2015 at the Wayback Machine, Stanford University.
  • ^ G. Dimitriadis; Aircraft Design Lecture 2: Aerodynamics, Université de Liège.
  • ^ "Alexander de Seversky". centennialofflight.net. Retrieved 31 March 2012.
  • ^ Potts, J.R.; Disc-wing aerodynamics, University of Manchester, 2005.
  • ^ letter from Hall-Warren, N.; Flight International, 1962, p. 716.
  • ^ "swept wing | avro vulcan | 1953 | 0030 | Flight Archive". Flightglobal.com. 5 December 1952. Retrieved 29 May 2012.
  • ^ a b Diederich and Foss; Static Aeroelastic Phenomena of M-, W- and Λ- wings, NACA 1953.
  • ^ "Aerodynamics at Teddington", Flight: 764, 5 June 1959
  • ^ a b Ellis Katz; Edward T. Marley; William T. Pepper, NACA RM L50G31 (PDF), NACA, archived from the original (PDF) on 21 July 2011
  • ^ P180 Avanti-Specification and Description. See page 55, Appendix A: "Notes about the 3-Lifting-Surface design".
  • ^ Ernst-Heinrich Hirschel; Horst Prem; Gero Madelung (2004). Aeronautical research in Germany: from Lilienthal until today. Springer Science & Business Media. p. 167. ISBN 978-3-540-40645-7.
  • ^ Benoliel, Alexander M., Aerodynamic Pitch-up of Cranked Arrow Wings: Estimation, Trim, and Configuration Design, Virginia Polytechnic Institute & State University, May 1994, retrieved 31 March 2012
  • ^ "Boeing Sonic Cruiser ousts 747X". Flightglobal.com. 3 April 2001. Retrieved 31 March 2012.
  • ^ "WHAT IS IT? Aircraft Characteristics That Aid the Spotter Classified : A Simple Guide for Basic Features in Design the Beginner", Flight: 562, 4 June 1942
  • ^ "fs 29 - "TF"". Uni-stuttgart.de. 5 February 2012. Retrieved 31 March 2012.
  • ^ "Plane With Expanding Wing, Flies In Tests". Popular Science. November 1932. p. 31.
  • ^ Lukins, A.H.; The book of Westland aircraft, Aircraft (Technical) Publications Ltd, (1943 or 1944).
  • ^ Hearst Magazines (January 1931). "Adjustable Airplane's Wings Are Changed In Flight". Popular Mechanics. Hearst Magazines. p. 55.
  • ^ Flight, August 15, 1929
  • ^ Boyne, W.J.; The best of Wings magazine, Brassey's (2001)
  • ^ "FlexSys Inc.: Aerospace". Archived from the original on 16 June 2011. Retrieved 26 April 2011.
  • ^ Kota, Sridhar; Osborn, Russell; Ervin, Gregory; Maric, Dragan; Flick, Peter; Paul, Donald. "Mission Adaptive Compliant Wing – Design, Fabrication and Flight Test" (PDF). Ann Arbor, MI; Dayton, OH, U.S.A.: FlexSys Inc., Air Force Research Laboratory. Archived from the original (PDF) on 22 March 2012. Retrieved 26 April 2011.
  • ^ Calzada, Ruby (20 August 2015). "AFTI F-111". NASA. Retrieved 24 June 2020.
  • ^ a b Wing vortex devices
  • Bibliography

    edit
    edit

    Retrieved from "https://en.wikipedia.org/w/index.php?title=Wing_configuration&oldid=1200293410#Wing_sweep"
     



    Last edited on 29 January 2024, at 05:54  





    Languages

     


    العربية
    Deutsch
    Español
    Français
    Bahasa Indonesia
    עברית

    Русский
    Slovenščina
    Suomi
    Українська
    Tiếng Vit
     

    Wikipedia


    This page was last edited on 29 January 2024, at 05:54 (UTC).

    Content is available under CC BY-SA 4.0 unless otherwise noted.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Terms of Use

    Desktop