Home  

Random  

Nearby  



Log in  



Settings  



Donate  



About Wikipedia  

Disclaimers  



Wikipedia





Xylose





Article  

Talk  



Language  

Watch  

Edit  


(Redirected from Xylosyl)
 


Xylose (cf. Ancient Greek: ξύλον, xylon, "wood") is a sugar first isolated from wood, and named for it. Xylose is classified as a monosaccharide of the aldopentose type, which means that it contains five carbon atoms and includes an aldehyde functional group. It is derived from hemicellulose, one of the main constituents of biomass. Like most sugars, it can adopt several structures depending on conditions. With its free aldehyde group, it is a reducing sugar.

d-Xylose
D-Xylopyranose
D-Xylopyranose
Xylofuranose
Xylofuranose
Xylose chair
Xylose linear
Names
IUPAC name

d-Xylose

Other names

(+)-Xylose
Wood sugar

Identifiers

CAS Number

  • 609-06-3 (l-isomer) checkY[ESIS]
  • 41247-05-6 (racemate) checkY[ESIS]
  • 3D model (JSmol)

    ChEMBL
    ChemSpider
    ECHA InfoCard 100.043.072 Edit this at Wikidata
    EC Number
    • 200-400-7

    PubChem CID

    UNII
  • A4JW0V2MYA (l-isomer) checkY
    • InChI=1S/C5H10O5/c6-2-1-10-5(9)4(8)3(2)7/h2-9H,1H2/t2-,3+,4-,5?/m1/s1 ☒N

      Key: SRBFZHDQGSBBOR-IOVATXLUSA-N ☒N

    • InChI=1/C5H10O5/c6-2-1-10-5(9)4(8)3(2)7/h2-9H,1H2/t2-,3+,4-,5?/m1/s1

      Key: SRBFZHDQGSBBOR-IOVATXLUBL

    • C1[C@H]([C@@H]([C@H](C(O1)O)O)O)O

    Properties[1][2]

    Chemical formula

    C
    5
    H
    10
    O
    5
    Molar mass 150.13 g/mol
    Appearance monoclinic needles or prisms, colourless
    Density 1.525 g/cm3 (20 °C)
    Melting point 144 to 145 °C (291 to 293 °F; 417 to 418 K)

    Chiral rotation ([α]D)

    +22.5° (CHCl
    3
    )

    Magnetic susceptibility (χ)

    -84.80·10−6cm3/mol
    Hazards
    NFPA 704 (fire diamond)
    NFPA 704 four-colored diamondHealth 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineFlammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
    1
    1
    0
    Related compounds

    Related aldopentoses

    Arabinose
    Ribose
    Lyxose

    Related compounds

    Xylulose

    Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

    ☒N verify (what is checkY☒N ?)

    Infobox references

    Structure

    edit

    The acyclic form of xylose has chemical formula HOCH
    2
    (CH(OH))3CHO
    . The cyclic hemiacetal isomers are more prevalent in solution and are of two types: the pyranoses, which feature six-membered C
    5
    O
    rings, and the furanoses, which feature five-membered C
    4
    O
    rings (with a pendant CH
    2
    OH
    group). Each of these rings is subject to further isomerism, depending on the relative orientation of the anomeric hydroxy group.

    The dextrorotary form, d-xylose, is the one that usually occurs endogenouslyinliving things. A levorotary form, l-xylose, can be synthesized.

    Occurrence

    edit

    Xylose is the main building block for the hemicellulose xylan, which comprises about 30% of some plants (birch for example), far less in others (spruce and pine have about 9% xylan). Xylose is otherwise pervasive, being found in the embryos of most edible plants. It was first isolated from wood by Finnish scientist, Koch, in 1881,[3] but first became commercially viable, with a price close to sucrose, in 1930.[4]

    Xylose is also the first saccharide added to the serineorthreonine in the proteoglycan type O-glycosylation, and, so, it is the first saccharide in biosynthetic pathways of most anionic polysaccharides such as heparan sulfate and chondroitin sulfate.[5]

    Xylose is also found in some species of Chrysolinina beetles, including Chrysolina coerulans. They have cardiac glycosides (including xylose) in their defensive glands.[6]

    Applications

    edit

    Chemicals

    edit

    The acid-catalysed degradation of hemicellulose gives furfural,[7][8] a precursor to synthetic polymers and to tetrahydrofuran.[9]

    Human consumption

    edit

    Xylose is metabolised by humans, although it is not a major human nutrient and is largely excreted by the kidneys.[10] Humans can obtain xylose only from their diet. An oxidoreductase pathway is present in eukaryotic microorganisms. Humans have enzymes called protein xylosyltransferases (XYLT1, XYLT2) which transfer xylose from UDP to a serine in the core protein of proteoglycans.

    Xylose contains 2.4 calories per gram[11] (lower than glucose or sucrose, approx. 4 calories per gram).

    Animal medicine

    edit

    In animal medicine, xylose is used to test for malabsorption by administration in water to the patient after fasting. If xylose is detected in blood and/or urine within the next few hours, it has been absorbed by the intestines.[12]

    High xylose intake on the order of approximately 100 g/kg of animal body weight is relatively well tolerated in pigs, and in a similar manner to results from human studies, a portion of the xylose intake is passed out in urine undigested.[13]

    Hydrogen production

    edit

    In 2014 a low-temperature 50 °C (122 °F), atmospheric-pressure enzyme-driven process to convert xylose into hydrogen with nearly 100% of the theoretical yield was announced. The process employs 13 enzymes, including a novel polyphosphate xylulokinase (XK).[14][15]

    Derivatives

    edit

    Reduction of xylose by catalytic hydrogenation produces the sugar substitute xylitol.

    See also

    edit

    References

    edit
    1. ^ The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals (11th ed.), Merck, 1989, ISBN 091191028X, 9995.
  • ^ Weast, Robert C., ed. (1981). CRC Handbook of Chemistry and Physics (62nd ed.). Boca Raton, FL: CRC Press. p. C-574. ISBN 0-8493-0462-8..
  • ^ Hudson, C.S.; Cantor, S.M., eds. (2014) [1950]. Advances in Carbohydrate Chemistry. Vol. 5. Elsevier. p. 278. ISBN 9780080562643.
  • ^ Miller, Mabel M.; Lewis, Howard B. (1932). "Pentose Metabolism: I. The Rate of Absorption of d-Xylose and the Formation of Glycogen in the Organism of the White Rat after Oral Administration of d-Xylose". Journal of Biological Chemistry. 98 (1): 133–140. doi:10.1016/S0021-9258(18)76145-0.
  • ^ Buskas, Therese; Ingale, Sampat; Boons, Geert-Jan (2006), "Glycopeptides as versatile tool for glycobiology", Glycobiology, 16 (8): 113R–36R, doi:10.1093/glycob/cwj125, PMID 16675547
  • ^ Morgan, E. David (2004). "§ 7.3.1 Sterols in Insects". Biosynthesis in Insects. Royal Society of Chemistry. p. 112. ISBN 9780854046911.
  • ^ Adams, Roger; Voorhees, V. (1921). "Furfural". Organic Syntheses. 1: 49. doi:10.15227/orgsyn.001.0049; Collected Volumes, vol. 1, p. 280.
  • ^ Gómez Millán, Gerardo; Hellsten, Sanna; King, Alistair W.T.; Pokki, Juha-Pekka; Llorca, Jordi; Sixta, Herbert (25 April 2019). "A comparative study of water-immiscible organic solvents in the production of furfural from xylose and birch hydrolysate". Journal of Industrial and Engineering Chemistry. 72: 354–363. doi:10.1016/j.jiec.2018.12.037. hdl:10138/307298. S2CID 104358224.
  • ^ Hoydonckx, H. E.; Van Rhijn, W. M.; Van Rhijn, W.; De Vos, D. E.; Jacobs, P. A. (2007). "Furfural and Derivatives". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a12_119.pub2. ISBN 978-3527306732.
  • ^ Johnson, S.A. (2007-08-24). Physiological and microbiological studies of nectar xylose metabolism in the Namaqua rock mouse, Aethomys namaquensis (A. Smith, 1834) (PhD). hdl:2263/27501.
  • ^ US US6239274B1, "Method of producing xylose", issued 1999-08-06 
  • ^ "D-xylose absorption", MedlinePlus, U.S. National Library of Medicine, July 2008, retrieved 2009-09-06
  • ^ Schutte JB, de Jong J, Polziehn R, Verstegen MW (July 1991). "Nutritional implications of D-xylose in pigs". Br J Nutr. 66 (1): 83–93. doi:10.1079/bjn19910012. PMID 1931909. S2CID 27670020.
  • ^ Martín Del Campo, J. S.; Rollin, J.; Myung, S.; Chun, Y.; Chandrayan, S.; Patiño, R.; Adams, M. W.; Zhang, Y. H. (2013-04-03). "Virginia Tech team develops process for high-yield production of hydrogen from xylose under mild conditions". Angewandte Chemie International Edition in English. 52 (17). Green Car Congress: 4587–4590. doi:10.1002/anie.201300766. PMID 23512726. S2CID 1915746. Retrieved 2014-01-22.
  • ^ Martín Del Campo, J. S.; Rollin, J.; Myung, S.; Chun, Y.; Chandrayan, S.; Patiño, R.; Adams, M. W.; Zhang, Y. -H. P. (2013). "High-Yield Production of Dihydrogen from Xylose by Using a Synthetic Enzyme Cascade in a Cell-Free System". Angewandte Chemie International Edition. 52 (17): 4587–4590. doi:10.1002/anie.201300766. PMID 23512726. S2CID 1915746.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Xylose&oldid=1202512900"
     



    Last edited on 2 February 2024, at 23:02  





    Languages

     


    Afrikaans
    العربية
    تۆرکجه

    Беларуская
    Беларуская (тарашкевіца)
    Български
    Català
    Čeština
    Dansk
    Deutsch
    Ελληνικά
    Español
    Euskara
    فارسی
    Français
    Frysk
    Galego

    Bahasa Indonesia
    Italiano
    עברית
    Lietuvių
    Magyar
    Nederlands

    Norsk nynorsk
    Polski
    Português
    Română
    Русский
    Slovenčina
    Српски / srpski
    Srpskohrvatski / српскохрватски
    Suomi
    Svenska
    ி

    Türkçe
    Українська

     

    Wikipedia


    This page was last edited on 2 February 2024, at 23:02 (UTC).

    Content is available under CC BY-SA 4.0 unless otherwise noted.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Terms of Use

    Desktop