Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Formal statement  



1.1  Alternating series test  





1.2  Alternating series estimation theorem  







2 Proof  



2.1  Proof of the alternating series test  





2.2  Proof of the alternating series estimation theorem  







3 Examples  



3.1  A typical example  





3.2  An example to show monotonicity is needed  





3.3  The test is only sufficient, not necessary  







4 See also  





5 Notes  





6 References  





7 External links  














Alternating series test






Bosanski
Català
Deutsch
Español
Esperanto
Français

ि
Hrvatski
Italiano
Lombard
Nederlands
Piemontèis
Polski
Português
Română
Русский
Svenska
Türkçe
Українська
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




Print/export  



















Appearance
   

 






From Wikipedia, the free encyclopedia
 


This is an old revision of this page, as edited by Stowgull (talk | contribs)at08:57, 2 February 2024 (Formal Statement). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
(diff)  Previous revision | Latest revision (diff) | Newer revision  (diff)

Inmathematical analysis, the alternating series test is the method used to show that an alternating seriesisconvergent when its terms (1) decrease in absolute value, and (2) approach zero in the limit. The test was used by Gottfried Leibniz and is sometimes known as Leibniz's test, Leibniz's rule, or the Leibniz criterion. The test is only sufficient, not necessary, so some convergent alternating series may fail the first part of the test.

Formal statement

Alternating series test

A series of the form

where either all an are positive or all an are negative, is called an alternating series.

The alternating series test guarantees that an alternating series converges if the following two conditions are met:

  1. decreases monotonically[1], i.e., , and

Alternating series estimation theorem

Moreover, let L denote the sum of the series, then the partial sum

approximates L with error bounded by the next omitted term:

Proof

Suppose we are given a series of the form , where and for all natural numbers n. (The case follows by taking the negative.)[1]

Proof of the alternating series test

We will prove that both the partial sums with odd number of terms, and with even number of terms, converge to the same number L. Thus the usual partial sum also converges to L.

The odd partial sums decrease monotonically:

while the even partial sums increase monotonically:

both because an decreases monotonically with n.

Moreover, since an are positive, . Thus we can collect these facts to form the following suggestive inequality:

Now, note that a1a2 is a lower bound of the monotonically decreasing sequence S2m+1, the monotone convergence theorem then implies that this sequence converges as m approaches infinity. Similarly, the sequence of even partial sum converges too.

Finally, they must converge to the same number because

Call the limit L, then the monotone convergence theorem also tells us extra information that

for any m. This means the partial sums of an alternating series also "alternates" above and below the final limit. More precisely, when there is an odd (even) number of terms, i.e. the last term is a plus (minus) term, then the partial sum is above (below) the final limit.

This understanding leads immediately to an error bound of partial sums, shown below.

Proof of the alternating series estimation theorem

We would like to show by splitting into two cases.

When k = 2m+1, i.e. odd, then

When k = 2m, i.e. even, then

as desired.

Both cases rely essentially on the last inequality derived in the previous proof.

For an alternative proof using Cauchy's convergence test, see Alternating series.

For a generalization, see Dirichlet's test.

Examples

A typical example

The alternating harmonic series meets both conditions for the alternating series test and converges.

An example to show monotonicity is needed

All of the conditions in the test, namely convergence to zero and monotonicity, should be met in order for the conclusion to be true. For example, take the series

The signs are alternating and the terms tend to zero. However, monotonicity is not present and we cannot apply the test. Actually the series is divergent. Indeed, for the partial sum we have which is twice the partial sum of the harmonic series, which is divergent. Hence the original series is divergent.

The test is only sufficient, not necessary

Leibniz test's monotonicity is not a necessary condition, thus the test itself is only sufficient, but not necessary. (The second part of the test is well known necessary condition of convergence for all series.) Examples of nonmonotonic series that converge are and

See also

Notes

^ In practice, the first few terms may increase. What is important is that for all after some point,[2] because the first finite amount of terms would not change a series' convergence/divergence.

References

  1. ^ The proof follows the idea given by James Stewart (2012) “Calculus: Early Transcendentals, Seventh Edition” pp. 727–730. ISBN 0-538-49790-4
  • ^ Dawkins, Paul. "Calculus II - Alternating Series Test". Paul's Online Math Notes. Lamar University. Retrieved 1 November 2019.
  • External links


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Alternating_series_test&oldid=1202233506"

    Categories: 
    Convergence tests
    Gottfried Wilhelm Leibniz
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Pages using sidebar with the child parameter
     



    This page was last edited on 2 February 2024, at 08:57 (UTC).

    This version of the page has been revised. Besides normal editing, the reason for revision may have been that this version contains factual inaccuracies, vandalism, or material not compatible with the Creative Commons Attribution-ShareAlike License.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki