Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Real form  





2 Complex Lie algebra of a complex Lie group  





3 Notes  





4 References  














Complex Lie algebra: Difference between revisions







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 





Help
 

From Wikipedia, the free encyclopedia
 


Browse history interactively
 Previous edit
Content deleted Content added
→‎top: unsure about the converse
AnomieBOT (talk | contribs)
6,357,704 edits
m Dating maintenance tags: {{Clarify}}
 
(24 intermediate revisions by 9 users not shown)
Line 1: Line 1:

In mathematics, a '''complex Lie algebra''' is a [[Lie algebra]] over the complex numbers.

In[[mathematics]], a '''complex Lie algebra''' is a [[Lie algebra]] over the [[complex number]]s.



Given a complex Lie algebra <math>\mathfrak{g}</math>, its '''conjugate''' <math>\overline{\mathfrak g}</math> is a complex Lie algebra with the same underlying real vector space but with <math>i = \sqrt{-1}</math> acting as <math>-i</math> instead.<ref>{{harvnb|Knapp|loc=Ch. VI, § 9.}}</ref> As a real Lie algebra, a complex Lie algebra <math>\mathfrak{g}</math> is trivially isomorphic to its conjugate. A complex Lie algebra is isomorphic to its conjugate if<!-- and only if? --> it admits a real form (and is said to be defined over the real numbers).

Given a complex Lie algebra <math>\mathfrak{g}</math>, its '''conjugate''' <math>\overline{\mathfrak g}</math> is a complex Lie algebra with the same underlying [[real number|real]] [[vector space]] but with <math>i = \sqrt{-1}</math> acting as <math>-i</math> instead.<ref name=Knapp>{{harvnb|Knapp|2002|loc=Ch. VI, § 9.}}</ref> As a real Lie algebra, a complex Lie algebra <math>\mathfrak{g}</math> is trivially [[isomorphic]] to its conjugate. A complex Lie algebra is isomorphic to its conjugate [[if and only if]] it admits a real form (and is said to be defined over the real numbers).



== Real form ==

== Real form ==

Line 8: Line 8:

Given a complex Lie algebra <math>\mathfrak{g}</math>, a real Lie algebra <math>\mathfrak{g}_0</math> is said to be a [[real form]] of <math>\mathfrak{g}</math> if the [[complexification]] <math>\mathfrak{g}_0 \otimes_{\mathbb{R}}\mathbb{C}</math> is isomorphic to <math>\mathfrak{g}</math>.

Given a complex Lie algebra <math>\mathfrak{g}</math>, a real Lie algebra <math>\mathfrak{g}_0</math> is said to be a [[real form]] of <math>\mathfrak{g}</math> if the [[complexification]] <math>\mathfrak{g}_0 \otimes_{\mathbb{R}}\mathbb{C}</math> is isomorphic to <math>\mathfrak{g}</math>.



A real form <math>\mathfrak{g}_0</math> is abelian (resp. nilpotent, solvable, semisimple) if and only if <math>\mathfrak{g}</math> is abelian (resp. nilpotent, solvable, semisimple).<ref name="Theorem 9">{{harvnb|Serre|loc=Ch. II, § 8, Theorem 9.}}</ref> On the other hand, a real form <math>\mathfrak{g}_0</math> is [[simple Lie algebra|simple]] if and only if either <math>\mathfrak{g}</math> is simple or <math>\mathfrak{g}</math> is of the form <math>\mathfrak{s} \times \overline{\mathfrak{s}}</math> where <math>\mathfrak{s}, \overline{\mathfrak{s}}</math> are simple and are the complex-conjugates of each other.<ref name="Theorem 9" />

A real form <math>\mathfrak{g}_0</math> is abelian (resp. nilpotent, solvable, semisimple) if and only if <math>\mathfrak{g}</math> is abelian (resp. nilpotent, solvable, semisimple).<ref name="Theorem 9">{{harvnb|Serre|2001|loc=Ch. II, § 8, Theorem 9.}}</ref> On the other hand, a real form <math>\mathfrak{g}_0</math> is [[simple Lie algebra|simple]] if and only if either <math>\mathfrak{g}</math> is simple or <math>\mathfrak{g}</math> is of the form <math>\mathfrak{s} \times \overline{\mathfrak{s}}</math> where <math>\mathfrak{s}, \overline{\mathfrak{s}}</math> are simple and are the conjugates of each other.<ref name="Theorem 9" />


The existence of a real form in a complex Lie algebra <math>\mathfrak g</math> implies that <math>\mathfrak g</math> is isomorphic to its conjugate;<ref name=Knapp /> indeed, if <math>\mathfrak{g} = \mathfrak{g}_0 \otimes_{\mathbb{R}} \mathbb{C} = \mathfrak{g}_0 \oplus i\mathfrak{g}_0</math>, then let <math>\tau : \mathfrak{g} \to \overline{\mathfrak{g}}</math> denote the <math>\mathbb{R}</math>-linear isomorphism induced by complex conjugate and then

:<math>\tau(i(x + iy)) = \tau(ix - y) = -ix- y = -i\tau(x + iy)</math>,

which is to say <math>\tau</math> is in fact a <math>\mathbb{C}</math>-linear isomorphism.


Conversely,{{clarify|There is a suggestion that the converse direction has a problem. See [https://math.stackexchange.com/questions/4873533/complex-lie-algebra-isomorphic-to-its-conjugate-has-a-real-form]|date=July 2024}} suppose there is a <math>\mathbb{C}</math>-linear isomorphism <math>\tau: \mathfrak{g} \overset{\sim}\to \overline{\mathfrak{g}}</math>; without loss of generality, we can assume it is the identity function on the underlying real vector space. Then define <math>\mathfrak{g}_0 = \{ z \in \mathfrak{g} | \tau(z) = z \}</math>, which is clearly a real Lie algebra. Each element <math>z</math> in <math>\mathfrak{g}</math> can be written uniquely as <math>z = 2^{-1}(z + \tau(z)) + i 2^{-1}(i\tau(z) - iz)</math>. Here, <math>\tau(i\tau(z) - iz) = -iz + i\tau(z)</math> and similarly <math>\tau</math> fixes <math>z + \tau(z)</math>. Hence, <math>\mathfrak{g} = \mathfrak{g}_0 \oplus i \mathfrak{g}_0</math>; i.e., <math>\mathfrak{g}_0</math> is a real form.



== Complex Lie algebra of a complex Lie group ==

== Complex Lie algebra of a complex Lie group ==

Let <math>\mathfrak{g}</math> be a complex Lie algebra that is the Lie algebra of a [[complex Lie group]] <math>G</math>. Let <math>\mathfrak{h}</math> be a [[Cartan subalgebra]] of <math>\mathfrak{g}</math> and <math>H</math> the Lie group corresponding to <math>\mathfrak{h}</math>; the conjugates of <math>H</math> are called [[Cartan subgroup]]s.

Let <math>\mathfrak{g}</math> be a semisimple complex Lie algebra that is the Lie algebra of a [[complex Lie group]] <math>G</math>. Let <math>\mathfrak{h}</math> be a [[Cartan subalgebra]] of <math>\mathfrak{g}</math> and <math>H</math> the Lie subgroup corresponding to <math>\mathfrak{h}</math>; the conjugates of <math>H</math> are called [[Cartan subgroup]]s.



Suppose <math>\mathfrak{g}</math> is semisimple and there is the decomposition <math>\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+</math> given by a choice of positive roots. Then the [[exponential map (Lie theory)|exponential map]] defines an isomorphism from <math>\mathfrak{n}^+</math> to a closed subgroup <math>U \subset G</math>.<ref>{{harvnb|Serre|loc=Ch. VIII, § 4, Theorem 6 (a).}}</ref> The Lie subgroup <math>B \subset G</math> corresponding to the [[Borel subalgebra]] <math>\mathfrak{b} = \mathfrak{h} \oplus \mathfrak{n}^+</math> is closed and is the semidirect product of <math>H</math> and <math>U</math>;<ref>{{harvnb|Serre|loc=Ch. VIII, § 4, Theorem 6 (b).}}</ref> the conjugates of <math>B</math> are called [[Borel subgroup]]s.

Suppose there is the decomposition <math>\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+</math> given by a choice of positive roots. Then the [[exponential map (Lie theory)|exponential map]] defines an isomorphism from <math>\mathfrak{n}^+</math> to a closed subgroup <math>U \subset G</math>.<ref>{{harvnb|Serre|2001|loc=Ch. VIII, § 4, Theorem 6 (a).}}</ref> The Lie subgroup <math>B \subset G</math> corresponding to the [[Borel subalgebra]] <math>\mathfrak{b} = \mathfrak{h} \oplus \mathfrak{n}^+</math> is closed and is the semidirect product of <math>H</math> and <math>U</math>;<ref>{{harvnb|Serre|2001|loc=Ch. VIII, § 4, Theorem 6 (b).}}</ref> the conjugates of <math>B</math> are called [[Borel subgroup]]s.



== References ==

== Notes ==

{{reflist}}

{{reflist}}


== References ==

* {{Fulton-Harris}}

* {{Fulton-Harris}}

* {{cite book|ref=harv|authorlink=A. W. Knapp|last=Knapp|first=A. W.|title=Lie groups beyond an introduction|isbn=0-8176-4259-5|publisher=Birkhäuser|series=Progress in Mathematics|volume=120|edition=2nd|year=2002|location=Boston·Basel·Berlin}}.

* {{cite book|author-link=A. W. Knapp|last=Knapp|first=A. W.|title=Lie groups beyond an introduction|isbn=0-8176-4259-5|publisher=Birkhäuser|series=Progress in Mathematics|volume=120|edition=2nd|year=2002|location=Boston·Basel·Berlin}}.

* Jean-Pierre Serre: Complex Semisimple Lie Algebras, Springer, Berlin, 2001. {{ISBN|3-5406-7827-1}}

* {{cite book |first=Jean-Pierre |last=Serre |title=Complex Semisimple Lie Algebras |publisher=Springer |location=Berlin |date=2001 |isbn=3-5406-7827-1}}




{{algebra-stub}}

{{algebra-stub}}




[[Category:Lie algebras]]


Latest revision as of 21:27, 9 July 2024

Inmathematics, a complex Lie algebra is a Lie algebra over the complex numbers.

Given a complex Lie algebra , its conjugate is a complex Lie algebra with the same underlying real vector space but with acting as instead.[1] As a real Lie algebra, a complex Lie algebra is trivially isomorphic to its conjugate. A complex Lie algebra is isomorphic to its conjugate if and only if it admits a real form (and is said to be defined over the real numbers).

Real form[edit]

Given a complex Lie algebra , a real Lie algebra is said to be a real formof if the complexification is isomorphic to .

A real form is abelian (resp. nilpotent, solvable, semisimple) if and only if is abelian (resp. nilpotent, solvable, semisimple).[2] On the other hand, a real form issimple if and only if either is simple or is of the form where are simple and are the conjugates of each other.[2]

The existence of a real form in a complex Lie algebra implies that is isomorphic to its conjugate;[1] indeed, if , then let denote the -linear isomorphism induced by complex conjugate and then

,

which is to say is in fact a -linear isomorphism.

Conversely,[clarification needed] suppose there is a -linear isomorphism ; without loss of generality, we can assume it is the identity function on the underlying real vector space. Then define , which is clearly a real Lie algebra. Each element in can be written uniquely as . Here, and similarly fixes . Hence, ; i.e., is a real form.

Complex Lie algebra of a complex Lie group[edit]

Let be a semisimple complex Lie algebra that is the Lie algebra of a complex Lie group . Let be a Cartan subalgebraof and the Lie subgroup corresponding to ; the conjugates of are called Cartan subgroups.

Suppose there is the decomposition given by a choice of positive roots. Then the exponential map defines an isomorphism from to a closed subgroup .[3] The Lie subgroup corresponding to the Borel subalgebra is closed and is the semidirect product of and ;[4] the conjugates of are called Borel subgroups.

Notes[edit]

  1. ^ a b Knapp 2002, Ch. VI, § 9.
  • ^ a b Serre 2001, Ch. II, § 8, Theorem 9.
  • ^ Serre 2001, Ch. VIII, § 4, Theorem 6 (a).
  • ^ Serre 2001, Ch. VIII, § 4, Theorem 6 (b).
  • References[edit]


  • t
  • e

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Complex_Lie_algebra&oldid=1233585495"

    Categories: 
    Algebra stubs
    Lie algebras
    Hidden categories: 
    Wikipedia articles needing clarification from July 2024
    All stub articles
     



    This page was last edited on 9 July 2024, at 21:27 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki