Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Real form  





2 Complex Lie algebra of a complex Lie group  





3 References  














Complex Lie algebra







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




Print/export  



















Appearance
   

 






From Wikipedia, the free encyclopedia
 


This is an old revision of this page, as edited by TakuyaMurata (talk | contribs)at08:51, 16 December 2019 (Complex Lie algebra of a complex Lie group). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
(diff)  Previous revision | Latest revision (diff) | Newer revision  (diff)

In mathematics, a complex Lie algebra is a Lie algebra over the complex numbers.

Real form

Given a complex Lie algebra , a real Lie algebra is said to be a real formof if the complexification is isomorphic to .

A real form is abelian (resp. nilpotent, solvable, semisimple) if and only if is abelian (resp. nilpotent, solvable, semisimple).[1] On the other hand, a real form is simple if and only if either is simple or is of the form where are simple and are complex conjugates of each other.[1]

Complex Lie algebra of a complex Lie group

Let be a complex Lie algebra that is the Lie algebra of a complex Lie group . Let aCartan subalgebraof and the Lie group corresponding to ; the conjugates of are called Cartan subgroups.

Suppose is semisimple and there is the decomposition given by a choice of a root system and positive roots. Then the exponential map defines an isomorphism from to a closed subgroup .[2] The Lie subgroup corresponding to is closed and is the semidirect product of and .[3]; the conjugates of are called Borel subgroups.

References

  1. ^ a b Serre, Ch. II, § 8, Theorem 9.
  • ^ Serre, Ch. VIII, § 4, Theorem 6 (a)
  • ^ Serre, Ch. VIII, § 4, Theorem 6 (b)
  • t
  • e

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Complex_Lie_algebra&oldid=930998538"

    Category: 
    Algebra stubs
    Hidden categories: 
    Harv and Sfn no-target errors
    All stub articles
     



    This page was last edited on 16 December 2019, at 08:51 (UTC).

    This version of the page has been revised. Besides normal editing, the reason for revision may have been that this version contains factual inaccuracies, vandalism, or material not compatible with the Creative Commons Attribution-ShareAlike License.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki