Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definition  





2 Motivation  





3 Estimation  





4 Relation to maximum likelihood  





5 Cross-entropy minimization  





6 Cross-entropy loss function and logistic regression  





7 Amended cross-entropy  





8 See also  





9 References  





10 Further reading  














Cross-entropy






العربية
Català
Čeština
Deutsch
Español
فارسی
Français

Italiano

Polski
Português
Русский
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 



The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Ininformation theory, the cross-entropy between two probability distributions and , over the same underlying set of events, measures the average number of bits needed to identify an event drawn from the set when the coding scheme used for the set is optimized for an estimated probability distribution , rather than the true distribution .

Definition

The cross-entropy of the distribution relative to a distribution over a given set is defined as follows:

,

where is the expected value operator with respect to the distribution .

The definition may be formulated using the Kullback–Leibler divergence , divergence of from (also known as the relative entropyof with respect to ).

where is the entropyof.

For discrete probability distributions and with the same support , this means

. (Eq.1)

The situation for continuous distributions is analogous. We have to assume that and are absolutely continuous with respect to some reference measure (usually is a Lebesgue measure on a Borel σ-algebra). Let and be probability density functions of and with respect to . Then

and therefore

. (Eq.2)

NB: The notation is also used for a different concept, the joint entropyof and .

Motivation

Ininformation theory, the Kraft–McMillan theorem establishes that any directly decodable coding scheme for coding a message to identify one value out of a set of possibilities can be seen as representing an implicit probability distribution over , where is the length of the code for in bits. Therefore, cross-entropy can be interpreted as the expected message-length per datum when a wrong distribution is assumed while the data actually follows a distribution . That is why the expectation is taken over the true probability distribution and not Indeed the expected message-length under the true distribution is

Estimation

There are many situations where cross-entropy needs to be measured but the distribution of is unknown. An example is language modeling, where a model is created based on a training set , and then its cross-entropy is measured on a test set to assess how accurate the model is in predicting the test data. In this example, is the true distribution of words in any corpus, and is the distribution of words as predicted by the model. Since the true distribution is unknown, cross-entropy cannot be directly calculated. In these cases, an estimate of cross-entropy is calculated using the following formula:

where is the size of the test set, and is the probability of event estimated from the training set. In other words, is the probability estimate of the model that the i-th word of the text is . The sum is averaged over the words of the test. This is a Monte Carlo estimate of the true cross-entropy, where the test set is treated as samples from [citation needed].

Relation to maximum likelihood

The cross entropy arises in classification problems when introducing a logarithm in the guise of the log-likelihood function.

The section is concerned with the subject of estimation of the probability of different possible discrete outcomes. To this end, denote a parametrized family of distributions by , with subject to the optimization effort. Consider a given finite sequence of values from a training set, obtained from conditionally independent sampling. The likelihood assigned to any considered parameter of the model is then given by the product over all probabilities . Repeated occurrences are possible, leading to equal factors in the product. If the count of occurrences of the value equal to (for some index ) is denoted by , then the frequency of that value equals . Denote the latter by , as it may be understood as empirical approximation to the probability distribution underlying the scenario. Further denote by the perplexity, which can be seen to equal by the calculation rules for the logarithm, and where the product is over the values without double counting. So

or

Since the logarithm is a monotonically increasing function, it does not affect extremization. So observe that the likelihood maximization amounts to minimization of the cross-entropy.

Cross-entropy minimization

Cross-entropy minimization is frequently used in optimization and rare-event probability estimation. When comparing a distribution against a fixed reference distribution , cross-entropy and KL divergence are identical up to an additive constant (since is fixed): According to the Gibbs' inequality, both take on their minimal values when , which is for KL divergence, and for cross-entropy. In the engineering literature, the principle of minimizing KL divergence (Kullback's "Principle of Minimum Discrimination Information") is often called the Principle of Minimum Cross-Entropy (MCE), or Minxent.

However, as discussed in the article Kullback–Leibler divergence, sometimes the distribution is the fixed prior reference distribution, and the distribution is optimized to be as close to as possible, subject to some constraint. In this case the two minimizations are not equivalent. This has led to some ambiguity in the literature, with some authors attempting to resolve the inconsistency by restating cross-entropy to be , rather than . In fact, cross-entropy is another name for relative entropy; see Cover and Thomas[1] and Good.[2] On the other hand, does not agree with the literature and can be misleading.

Cross-entropy loss function and logistic regression

Cross-entropy can be used to define a loss function in machine learning and optimization. Mao, Mohri, and Zhong (2023) give an extensive analysis of the properties of the family of cross-entropy loss functions in machine learning, including theoretical learning guarantees and extensions to adversarial learning.[3] The true probability is the true label, and the given distribution is the predicted value of the current model. This is also known as the log loss (orlogarithmic loss[4]orlogistic loss);[5] the terms "log loss" and "cross-entropy loss" are used interchangeably.[6]

More specifically, consider a binary regression model which can be used to classify observations into two possible classes (often simply labelled and ). The output of the model for a given observation, given a vector of input features , can be interpreted as a probability, which serves as the basis for classifying the observation. In logistic regression, the probability is modeled using the logistic function where is some function of the input vector , commonly just a linear function. The probability of the output is given by

where the vector of weights is optimized through some appropriate algorithm such as gradient descent. Similarly, the complementary probability of finding the output is simply given by

Having set up our notation, and , we can use cross-entropy to get a measure of dissimilarity between and :

Plot shows different loss functions that can be used to train a binary classifier. Only the case where the target output is 1 is shown. It is observed that the loss is zero when the target is equal to the output and increases as the output becomes increasingly incorrect.

Logistic regression typically optimizes the log loss for all the observations on which it is trained, which is the same as optimizing the average cross-entropy in the sample. Other loss functions that penalize errors differently can be also used for training, resulting in models with different final test accuracy.[7] For example, suppose we have samples with each sample indexed by . The average of the loss function is then given by:

where , with the logistic function as before.

The logistic loss is sometimes called cross-entropy loss. It is also known as log loss.[duplication?] (In this case, the binary label is often denoted by {−1,+1}.[8])

Remark: The gradient of the cross-entropy loss for logistic regression is the same as the gradient of the squared-error loss for linear regression. That is, define

Then we have the result

The proof is as follows. For any , we have

In a similar way, we eventually obtain the desired result.

Amended cross-entropy

It may be beneficial to train an ensemble of models that have diversity, such that when they are combined, their predictive accuracy is augmented.[9][10] Assuming a simple ensemble of classifiers is assembled via averaging the outputs, then the amended cross-entropy is given by

where is the cost function of the classifier, is the output probability of the classifier, is the true probability to be estimated, and is a parameter between 0 and 1 that defines the 'diversity' that we would like to establish among the ensemble. When we want each classifier to do its best regardless of the ensemble and when we would like the classifier to be as diverse as possible.

See also

References

  1. ^ Thomas M. Cover, Joy A. Thomas, Elements of Information Theory, 2nd Edition, Wiley, p. 80
  • ^ I. J. Good, Maximum entropy for hypothesis formulation, especially for multidimensional contingency tables, Ann. of Math. Statistics, 1963
  • ^ Anqi Mao, Mehryar Mohri, Yutao Zhong. Cross-entropy loss functions: Theoretical analysis and applications. ICML 2023. https://arxiv.org/pdf/2304.07288.pdf
  • ^ The Mathematics of Information Coding, Extraction and Distribution, by George Cybenko, Dianne P. O'Leary, Jorma Rissanen, 1999, p. 82
  • ^ Probability for Machine Learning: Discover How To Harness Uncertainty With Python, Jason Brownlee, 2019, p. 220: "Logistic loss refers to the loss function commonly used to optimize a logistic regression model. It may also be referred to as logarithmic loss (which is confusing) or simply log loss."
  • ^ sklearn.metrics.log_loss
  • ^ Noel, Mathew; Banerjee, Arindam; D, Geraldine Bessie Amali; Muthiah-Nakarajan, Venkataraman (March 17, 2023). "Alternate loss functions for classification and robust regression can improve the accuracy of artificial neural networks". arXiv:2303.09935 [cs.NE].
  • ^ Murphy, Kevin (2012). Machine Learning: A Probabilistic Perspective. MIT. ISBN 978-0262018029.
  • ^ Shoham, Ron; Permuter, Haim H. (2019). "Amended Cross-Entropy Cost: An Approach for Encouraging Diversity in Classification Ensemble (Brief Announcement)". In Dolev, Shlomi; Hendler, Danny; Lodha, Sachin; Yung, Moti (eds.). Cyber Security Cryptography and Machine Learning – Third International Symposium, CSCML 2019, Beer-Sheva, Israel, June 27–28, 2019, Proceedings. Lecture Notes in Computer Science. Vol. 11527. Springer. pp. 202–207. doi:10.1007/978-3-030-20951-3_18. ISBN 978-3-030-20950-6.
  • ^ Shoham, Ron; Permuter, Haim (2020). "Amended Cross Entropy Cost: Framework For Explicit Diversity Encouragement". arXiv:2007.08140 [cs.LG].
  • Further reading


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Cross-entropy&oldid=1233507619"

    Categories: 
    Entropy and information
    Loss functions
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from May 2019
    All articles with minor POV problems
    Articles with minor POV problems from November 2023
     



    This page was last edited on 9 July 2024, at 12:49 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki