Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Examples  





2 See also  





3 References  














Duality (order theory)






Español
Українська
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




Print/export  



















Appearance
   

 






From Wikipedia, the free encyclopedia
 


This is an old revision of this page, as edited by Jarble (talk | contribs)at19:26, 18 July 2019 (linking). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
(diff)  Previous revision | Latest revision (diff) | Newer revision  (diff)

In the mathematical area of order theory, every partially ordered set P gives rise to a dual (oropposite) partially ordered set which is often denoted by PoporPd. This dual order Pop is defined to be the set with the inverse order, i.e. xy holds in Pop if and only if yx holds in P. It is easy to see that this construction, which can be depicted by flipping the Hasse diagram for P upside down, will indeed yield a partially ordered set. In a broader sense, two posets are also said to be duals if they are dually isomorphic, i.e. if one poset is order isomorphic to the dual of the other.

The importance of this simple definition stems from the fact that every definition and theorem of order theory can readily be transferred to the dual order. Formally, this is captured by the Duality Principle for ordered sets:

If a given statement is valid for all partially ordered sets, then its dual statement, obtained by inverting the direction of all order relations and by dualizing all order theoretic definitions involved, is also valid for all partially ordered sets.

If a statement or definition is equivalent to its dual then it is said to be self-dual. Note that the consideration of dual orders is so fundamental that it often occurs implicitly when writing ≥ for the dual order of ≤ without giving any prior definition of this "new" symbol.

Examples

A bounded distributive lattice, and its dual

Naturally, there are a great number of examples for concepts that are dual:

Examples of notions which are self-dual include:

Since partial orders are antisymmetric, the only ones that are self-dual are the equivalence relations.

See also

References

  1. ^ The quantifiers are essential: for individual elements x, y, z, e.g. the first equation may be violated, but the second may hold; see the N5 lattice for an example.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Duality_(order_theory)&oldid=906860253"

Categories: 
Order theory
Duality theories
 



This page was last edited on 18 July 2019, at 19:26 (UTC).

This version of the page has been revised. Besides normal editing, the reason for revision may have been that this version contains factual inaccuracies, vandalism, or material not compatible with the Creative Commons Attribution-ShareAlike License.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki