Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Description  





2 Windmill restart  





3 Notable incidents of flameout  



3.1  Engine flameout due to inclement weather and volcanic activity  





3.2  Engine flameout due to fuel starvation  





3.3  Engine flameout due to mechanical problems  





3.4  Other examples  







4 References  














Flameout: Difference between revisions






العربية
Català
Deutsch
Español
فارسی
Français
Bahasa Indonesia

Русский
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




Print/export  



















Appearance
   

 





Help
 

From Wikipedia, the free encyclopedia
 


Browse history interactively
 Previous editNext edit 
Content deleted Content added
Typo fixing, typo(s) fixed: onboard → on board using AWB
Tags: Mobile edit Mobile web edit
Line 27: Line 27:

* On August 14, 2005, [[Helios Airways Flight 522]], operated by a [[Boeing 737-300]], entered a holding pattern over [[Athens]], having flown on autopilot for most of its flight. This was due to most of the plane's occupants having been incapacitated by [[hypoxic hypoxia|hypoxia]] due to an improperly-configured pressurization system. [[Hellenic Air Force]] pilots in F-16s noticed a flight attendant, Andreas Prodromou, enter the cockpit and attempt to communicate to the pilots by waving to them. Almost as soon as the attendant entered the cockpit and sat at the controls, the 737's left engine flamed out from fuel exhaustion. Ten minutes later, the right engine also flamed out. Despite the attendant's efforts to control the plane, the aircraft crashed into a hill near [[Grammatiko]], killing all 121 people on board.

* On August 14, 2005, [[Helios Airways Flight 522]], operated by a [[Boeing 737-300]], entered a holding pattern over [[Athens]], having flown on autopilot for most of its flight. This was due to most of the plane's occupants having been incapacitated by [[hypoxic hypoxia|hypoxia]] due to an improperly-configured pressurization system. [[Hellenic Air Force]] pilots in F-16s noticed a flight attendant, Andreas Prodromou, enter the cockpit and attempt to communicate to the pilots by waving to them. Almost as soon as the attendant entered the cockpit and sat at the controls, the 737's left engine flamed out from fuel exhaustion. Ten minutes later, the right engine also flamed out. Despite the attendant's efforts to control the plane, the aircraft crashed into a hill near [[Grammatiko]], killing all 121 people on board.

* On 29 November 2013, a Police Scotland Eurocopter EC135-T2+ experienced a double engine flameout and [[2013 Glasgow helicopter crash|crashed into a Glasgow pub]], the Clutha Vaults. Three persons in the aircraft and seven on the ground were killed; an additional 32 were injured. Both engines flamed out about 32 seconds apart due to fuel starvation.<ref>{{Cite web|url = https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/482335/AAIB_Bulletin_12-2015.pdf|title = AAIB Bulletin 12/2015|date = |accessdate = 10/12/2015|website = |publisher = Air Accidents Investigation Branch, Department for Transport|last = |first = }}</ref>

* On 29 November 2013, a Police Scotland Eurocopter EC135-T2+ experienced a double engine flameout and [[2013 Glasgow helicopter crash|crashed into a Glasgow pub]], the Clutha Vaults. Three persons in the aircraft and seven on the ground were killed; an additional 32 were injured. Both engines flamed out about 32 seconds apart due to fuel starvation.<ref>{{Cite web|url = https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/482335/AAIB_Bulletin_12-2015.pdf|title = AAIB Bulletin 12/2015|date = |accessdate = 10/12/2015|website = |publisher = Air Accidents Investigation Branch, Department for Transport|last = |first = }}</ref>

* On 28 November 2016, [[LaMia Flight 2933|Flight 2933]], carrying the [[Chapecoense|Chapecoense football squad]], enroute from Brazil to Colombia, crashed in Colombia, as all four of its engines flamed out. Out of 77 people on board, 71 died, leaving 6 survivors, including three football players.



=== Engine flameout due to mechanical problems ===

=== Engine flameout due to mechanical problems ===


Revision as of 16:05, 8 August 2017

In aviation a flameout refers to the run-down of a jet engine caused by the extinction of the flame in the combustion chamber. It can be caused by a number of factors, including fuel starvation, compressor stall, insufficient oxygen (at high altitudes), foreign object damage (such as caused by birds, hailorvolcanic ash), severe inclement weather, mechanical failure and very cold ambient temperatures.[1][2]

Description

A flameout is believed to be most likely to occur when flying through certain weather conditions at a low power setting such as flight idle (e.g. during the descent). These conditions include flight through moderate to heavy turbulence, rain, hail or sleet. The potentially hazardous circumstances are highlighted in the flight manual with a requirement to select continuous ignition. Alternatively, the FADEC engine controller will select ignition automatically if it detects specific changes in engine parameters. It will also perform a relight if necessary. A manual re-light attempt is made by following the procedure in the Flight Operations Manual.[3]

Early jet engines were prone to flameout due to disturbances of inlet air, caused from gas ingestion. Fast acceleration or inappropriate throttle settings could also impoverish the fuel/air mixture causing a flameout or an excessive jet pipe temperature. However, if the throttle movements are made smoothly and not too rapidly, there was little or no risk of flame extinction. If this happened at low altitude, it would often lead to the total loss of the aircraft. However, jet engines were developed to be controlled with a governor, a centrifugal feedback valve for controlling the speed of the engine – sometimes referred to as FCU (Fuel Control Unit) or HMU (Hydro-Mechanical Unit) – allowing controlled fuel metering proportional to the engine's rotational speed. Current modern engines are engineered to a higher degree of technical quality controlled by digital electronic systems (FADEC) that constantly fine-tune their performance; thus such flameouts are not as common as they were in the early days of jet-powered aviation.

It is common practice for pilots to be taught and to practice flameout landings.[4]

Windmill restart

In-flight restarts are designated as either windmill or starter-assisted, depending where in the flight envelope the restart is attempted. The re-light envelope occupies the lower part of the flight envelope below about 30,000 ft (28,000 ft in the case of a Boeing 747, which experienced flameouts at 37,000 ft[5]). When an appropriate initial altitude and forward speed are available, the mass airflow through the compressor blades can maintain sufficient rotational velocity for enough time to permit restart. If the aircraft's operating conditions are not sufficient for a windmill start, the engine's starter motor must be operated to increase the turbine velocity to the minimum required speed.[6]

Notable incidents of flameout

Engine flameout due to inclement weather and volcanic activity

Engine flameout due to fuel starvation

Engine flameout due to mechanical problems

Other examples

References

  1. ^ "''Turbo Jet Flame Out'' by Ask a Scientist". Newton.dep.anl.gov. Retrieved 25 March 2012.
  • ^ "''Flameout – Why the fire in a perfectly healthy jet engine can die.'' by Peter Garrison, Air & Space Magazine, September 01, 2006". Airspacemag.com. Retrieved 25 March 2012.
  • ^ "''Airplane Turbofan Engine Operation and Malfunctions'', FAA Manual". Webcache.googleusercontent.com. Archived from the original on 4 September 2013. Retrieved 2012-03-25. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  • ^ [1]
  • ^ Flightglobal archive flight International 10 July 1982 p59
  • ^ "Gas Turbine Performance" 2nd edition P.P.Walsh P. Fletcher ISBN 0-632-06434-X p484
  • ^ "AAIB Bulletin 12/2015" (PDF). Air Accidents Investigation Branch, Department for Transport. Retrieved 10/12/2015. {{cite web}}: Check date values in: |accessdate= (help)
  • ^ [2]

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Flameout&oldid=794528729"

    Categories: 
    Aviation risks
    Jet engines
    Hidden categories: 
    CS1 errors: unsupported parameter
    CS1 errors: dates
    Articles needing expert attention with no reason or talk parameter
    Articles needing expert attention from June 2009
    All articles needing expert attention
    Aircraft articles needing expert attention
    Use dmy dates from August 2014
     



    This page was last edited on 8 August 2017, at 16:05 (UTC).

    This version of the page has been revised. Besides normal editing, the reason for revision may have been that this version contains factual inaccuracies, vandalism, or material not compatible with the Creative Commons Attribution-ShareAlike License.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki