Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Calculating the gcd  





2 Properties  





3 The gcd in commutative rings  





4 External links  














Greatest common divisor






Alemannisch
العربية
Asturianu
Azərbaycanca

Беларуская
Български
Bosanski
Català
Чӑвашла
Čeština
Cymraeg
Dansk
Deutsch
Eesti
Ελληνικά
Español
Esperanto
Euskara
فارسی
Français
Galego

Հայերեն
ि
Hrvatski
Ido
Bahasa Indonesia
Íslenska
Italiano
עברית

Қазақша
Latviešu
Lietuvių
Lombard
Magyar
Македонски


Bahasa Melayu
Монгол
Nederlands

Norsk bokmål
ି
Oʻzbekcha / ўзбекча

Piemontèis
Plattdüütsch
Polski
Português
Română
Русский
Shqip

Simple English
Slovenčina
Slovenščina
کوردی
Српски / srpski
Srpskohrvatski / српскохрватски
Suomi
Svenska
Tagalog
ி
Татарча / tatarça


Türkçe
Українська
اردو
Tiếng Vit

ייִדיש


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




Print/export  







In other projects  



Wikimedia Commons
Wikibooks
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


This is an old revision of this page, as edited by SirJective (talk | contribs)at22:52, 26 January 2005 (The gcd in commutative rings: inserted example from talk page). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
(diff)  Previous revision | Latest revision (diff) | Newer revision  (diff)

Inmathematics, the greatest common divisor (gcd), sometimes known as the greatest common factor (GCF) or highest common factor (hcf) of two integers which are not both zero is the largest integer that divides both numbers.

The greatest common divisor of a and b is written as gcd(ab), or sometimes simply as (ab). For example, gcd(12, 18) = 6, gcd(−4, 14) = 2 and gcd(5, 0) = 5. Two numbers are called coprimeorrelatively prime if their greatest common divisor equals 1. For example, 9 and 28 are relatively prime.

The greatest common divisor is useful for reducing fractions to be in lowest terms. Consider for instance

where we cancelled 14, the greatest common divisor of 42 and 56.

Calculating the gcd

Greatest common divisors can in principle be computed by determining the prime factorizations of the two numbers and comparing factors, as in the following example: to compute gcd(18,84), we find the prime factorizations 18 = 2·32 and 84 = 22·3·7 and notice that the "overlap" of the two expressions is 2·3; so gcd(18,84) = 6. In practice, this method is only feasible for very small numbers; computing prime factorizations in general takes far too long.

A much more efficient method is the Euclidean algorithm: divide 84 by 18 to get a quotient of 4 and a remainder of 12. Then divide 18 by 12 to get a quotient of 1 and a remainder of 6. Then divide 12 by 6 to get a remainder of 0, which means that 6 is the gcd.

Properties

Every common divisor of a and b is a divisor of gcd(ab).

gcd(ab), where a and b are not both zero, may be defined alternatively and equivalently as the smallest positive integer d which can be written in the form d = a·p + b·q where p and q are integers. Numbers p and q like this can be computed with the extended Euclidean algorithm.

Ifa divides the product b·c, and gcd(ab) = d, then a/d divides c.

Ifm is any integer, then gcd(m·am·b) = m·gcd(ab) and gcd(a + m·bb) = gcd(ab). If m is a nonzero common divisor of a and b, then gcd(a/mb/m) = gcd(ab)/m.

The gcd is a multiplicative function in the following sense: if a1 and a2 are relatively prime, then gcd(a1·a2b) = gcd(a1b)·gcd(a2b).

The gcd of three numbers can be computed as gcd(abc) = gcd(gcd(ab), c) = gcd(a, gcd(bc)). Thus the gcd is an associative operation.

gcd(ab) is closely related to the least common multiple lcm(ab): we have

gcd(ab)·lcm(ab) = a·b.

This formula is often used to compute least common multiples: one first computes the gcd with Euclid's algorithm and then divides the product of the given numbers by their gcd. The following versions of distributivity hold true:

gcd(a, lcm(bc)) = lcm(gcd(ab), gcd(ac))
lcm(a, gcd(bc)) = gcd(lcm(ab), lcm(ac)).

It is useful to define gcd(0, 0) = 0 and lcm(0, 0) = 0 because then the natural numbers become a complete distributive lattice with gcd as meet and lcm as join operation. This extension of the definition is also compatible with the generalization for commutative rings given below.

In a Cartesian coordinate system, gcd(ab) can be interpreted as the number of points with integral coordinates on the straight line joining the points (0, 0) and (ab), excluding (0, 0).

The gcd in commutative rings

The greatest common divisor can more generally be defined for elements of an arbitrary commutative ring.

IfR is a commutative ring, and a and b are in R, then an element of dofR is called a common divisorofa and b if it divides both a and b (that is, if there are elements x and yinR such that d·x = a and d·y = b). If d is a common divisor of a and b, and every common divisor of a and b divides d, then d is called a greatest common divisorofa and b.

Note that with this definition, two elements a and b may very well have several greatest common divisors, or none at all. But if R is an integral domain then any two gcd's of a and b must be associate elements. Also, if R is a unique factorization domain, then any two elements have a gcd. If R is a Euclidean domain then a form of the Euclidean algorithm can be used to compute greatest common divisors.

The following is an example of an integral domain with two elements that don't have a gcd:

The elements and are two "maximal common divisors" (i.e. any common divisor which is a multiple of 2 is associated to 2, the same holds for ), but they are not associated, so there is no greatest common divisor of a and b.

External links


Retrieved from "https://en.wikipedia.org/w/index.php?title=Greatest_common_divisor&oldid=11018515"

Category: 
Number theory
 



This page was last edited on 26 January 2005, at 22:52 (UTC).

This version of the page has been revised. Besides normal editing, the reason for revision may have been that this version contains factual inaccuracies, vandalism, or material not compatible with the Creative Commons Attribution-ShareAlike License.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki