Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 History and motivation  





2 Optical principles  





3 Advantages  





4 Testing for and setting up Köhler illumination  





5 References  





6 See also  





7 External links  














Köhler illumination: Difference between revisions






Français

Português
Русский

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




Print/export  







In other projects  



Wikimedia Commons
 
















Appearance
   

 





Help
 

From Wikipedia, the free encyclopedia
 


Browse history interactively
 Previous editNext edit 
Content deleted Content added
m Linkifying
Line 1: Line 1:

[[Köhler illumination]] is a method of [[specimen]] [[illumination (lighting)|illumination]] used for transmitted and reflected light (trans- and epi-illuminated) [[optical microscope|optical]] [[microscopy]]. Köhler illumination acts to generate an extremely even illumination of the sample and ensures that an image of the illumination source (for example a [[halogen lamp]] [[bulb filament|filament]]) is not visible in the resulting [[image]]. Köhler illumination is the predominant technique for sample illumination in modern scientific light microscopy although it requires additional optics which less expensive and simpler light microscopes may not have.

[[Köhler illumination]] is a method of [[specimen]] [[illumination (lighting)|illumination]] used for transmitted and reflected light (trans- and epi-illuminated) [[optical microscope|optical]] [[microscopy]]. Köhler illumination acts to generate an extremely even illumination of the sample and ensures that an image of the illumination source (for example a [[halogen lamp]] [[electrical filament|filament]]) is not visible in the resulting [[image]]. Köhler illumination is the predominant technique for sample illumination in modern scientific light microscopy although it requires additional optics which less expensive and simpler light microscopes may not have.



==History and motivation==

==History and motivation==


Revision as of 07:05, 24 October 2012

Köhler illumination is a method of specimen illumination used for transmitted and reflected light (trans- and epi-illuminated) optical microscopy. Köhler illumination acts to generate an extremely even illumination of the sample and ensures that an image of the illumination source (for example a halogen lamp filament) is not visible in the resulting image. Köhler illumination is the predominant technique for sample illumination in modern scientific light microscopy although it requires additional optics which less expensive and simpler light microscopes may not have.

History and motivation

Prior to Köhler illumination critical illumination was the predominant technique for sample illumination. Critical illumination has the major limitation that the image of the light source (typically a light bulb) falls in the same plane as the image of the specimen, i.e. the bulb filament is visible in the final image. The image of the light source is often referred to as the filament image. Critical illumination therefore gives uneven illumination of the sample; bright regions in the filament image illuminate those region of the sample more strongly. Uneven illumination is undesirable as it can introduce artefacts such as glare and shadowing in the image.

Various methods can be used to diffuse the filament image, including reducing power to the light source or using an opal glass bulb or an opal glass diffuser between the bulb and the sample. These methods are all, to some extent, functional at reducing the unevenness of illumination however they all reduce intensity of illumination and alter the range of wavelengths of light which reach the sample.

In order to address these limitations August Köhler designed a new method of illumination which uses a perfectly defocused image of the light source to illuminate the sample. This work was published in 1893 in the Zeitschrift für wissenschaftliche Mikroskopie [1] and was soon followed by publication of an English translation in the Journal of the Royal Microscopical Society [2].

Optical principles

The optical setup and light path of Köhler illumination showing the conjugate image planes of various optical components.

The primary limitation of critical illumination is the formation of an image of the light source in the specimen image plane. Köhler illumination addresses this by ensuring the image of the light source is perfectly defocused in the sample plane and its conjugate image planes. In a ray diagram of the illumination light path this can be seen as the image-forming rays passing parallel through the sample.

Köhler illumination requires several optical components to function:

  1. Collector lens and/or field lens
  2. Field diaphragm
  3. Condenser diaphragm
  4. Condenser lens

These components lie in this order between the light source and the specimen and control the illumination of the specimen. The collector/field lenses act to collect light from the light source and focus it at the plane of the condenser diaphragm. The condenser lens acts to project this light, without focusing it, through the sample. This illumination scheme creates two sets of conjugate image planes, one with the light source image and one with the specimen. These two sets of image planes are found at the following points:

Light source image planes:
  • Lamp filament
  • Condenser diaphragm
  • Back focal plane of the objective
  • The eyepoint
Specimen image planes:
  • Field diaphragm
  • Specimen
  • Intermediate image plane (the eyepiece diaphragm)
  • The eye retina or camera sensor

Advantages

The primary advantage of Köhler illumination is the extremely even illumination of the sample. This reduces image artifacts and provides high sample contrast. Even illumination of the sample is also critical for advanced illumination techniques such as phase contrast and differential interference contrast microscopy.

By adjustment of the field diaphragm the amount of light entering the sample can be freely adjusted without altering the wavelengths of light present, in contrast to reducing power to the light source with critical illumination. Adjusting the condenser diaphragm alters sample contrast. Furthermore altering the size of the condenser diaphragm allows adjustment of sample depth of field by altering the effective numerical aperture of the microscope. The role of the condenser diaphragm is analogous to the apertureinphotography although the condenser diaphragm of a microscope functions by controlling illumination of the specimen, while the aperture of a camera functions by controlling illumination of the detector.

Testing for and setting up Köhler illumination

Microscopes using Köhler illumination must be routinely checked for correct alignment. The realignment procedure tests whether the correct optical components are in focus at the two sets of conjugate image planes; the light source image planes and the specimen image planes.

Alignment of optical components on the specimen image plane is typically performed by first loading a test specimen and bringing it into focus by moving the objective or the specimen. The field diaphragm is then partially closed; the edges of the diaphragm should be in the same conjugate image planes as the specimen, therefore should appear in focus. The focus can be adjusted by raising or lowering the condenser lenses and diaphragm. Finally, the field diaphragm is reopened to just beyond the field of view.

In order to test the alignment of components on the light source image plane, the eyepiece must be removed to allow observation of the intermediate image plane (the position of the eyepiece diaphragm) either directly or by using an phase telescope/Bertrand lens. The light source (e.g. the bulb filament) and the edges of the condenser diaphragm should appear in focus. Any optical components at the back focal plane of the objective (e.g. the phase ring for phase contrast microscopy) and at the condenser diaphragm (e.g. the annulus for phase contrast microscopy) should also appear in focus.

References

  1. ^ Koehler, August (1894). "New Method of Illimination for Phomicrographical Purposes". Journal of the Royal Microscopical Society. 14: 261–262.
  • ^ Köhler, August (1893). "Ein neues Beleuchtungsverfahren für mikrophotographische Zwecke". Zeitschrift für wissenschaftliche Mikroskopie und für Mikroskopische Technik. 10 (4): 433–440.
  • See also

    Optical microscopy techniques which use Köhler illumination as a basis:

    External links


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Köhler_illumination&oldid=519525457"

    Categories: 
    Microscopy
    Lighting
     



    This page was last edited on 24 October 2012, at 07:05 (UTC).

    This version of the page has been revised. Besides normal editing, the reason for revision may have been that this version contains factual inaccuracies, vandalism, or material not compatible with the Creative Commons Attribution-ShareAlike License.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki