Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definitions  





2 Where to find Lefschetz manifolds  





3 Notes  














Lefschetz manifold







 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




Print/export  



















Appearance
   

 






From Wikipedia, the free encyclopedia
 


This is an old revision of this page, as edited by Giftlite (talk | contribs)at16:04, 18 December 2008 (Definitions: mv .). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
(diff)  Previous revision | Latest revision (diff) | Newer revision  (diff)

Inmathematics, a Lefschetz manifold is a particular kind of symplectic manifold.

Definitions

Let be a ()-dimensional smooth manifold. Each element

of the second de Rham cohomology space of induces a map

called the Lefschetz mapof. Letting be the th iteration of , we have for each a map

Ifiscompact and oriented, then Poincaré duality tells us that and are vector spaces of the same dimension, so in these cases it is natural to ask whether or not the various iterations of Lefschetz maps are isomorphisms.

If

and

are isomorphisms, then is a Lefschetz element, or Lefschetz class. If

is an isomorphism for all , then is a strong Lefschetz element, or a strong Lefschetz class.

Let be a -dimensional symplectic manifold. (Symplectic manifolds are always orientable, although certainly not always compact.) Then is a Lefschetz manifoldif is a Lefschetz element, and is a strong Lefschetz manifoldif is a strong Lefschetz element.

Where to find Lefschetz manifolds

The real manifold underlying any Kähler manifold is a symplectic manifold. The strong Lefschetz theorem tells us that it is also a strong Lefschetz manifold, and hence a Lefschetz manifold. Therefore we have the following chain of inclusions.

{Kähler manifolds} {strong Lefschetz manifolds} {Lefschetz manifolds} {symplectic manifolds}

In[1], Chal Benson and Carolyn S. Gordon proved that if a compact nilmanifold is a Lefschetz manifold, then it is diffeomorphic to a torus. The fact that there are nilmanifolds that are not diffeomorphic to a torus shows that there is some space between Kähler manifolds and symplectic manifolds, but the class of nilmanifolds fails to show any differences between Kähler manifolds, Lefschetz manifolds, and strong Lefschetz manifolds.

Gordan and Benson conjectured that if a compact complete solvmanifold admits a Kähler structure, then it is diffeomorphic to a torus. This has been proved. Furthermore, many examples have been found of solvmanifolds that are strong Lefschetz but not Kähler, and solvmanifolds that are Lefschetz but not strong Lefschetz. Such examples can be found in [2].

Notes

  1. ^ C. Benson and C. Gordon, Kahler and symplectic structures on nilmanifolds, Topology 27 (1988), 513-518.
  • ^ Takumi Yamada, Examples of Compact Lefschetz Solvmanifolds, Tokyo J. Math Vol. 25, No. 2, (2002), 261-283.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Lefschetz_manifold&oldid=258796653"

    Category: 
    Symplectic geometry
     



    This page was last edited on 18 December 2008, at 16:04 (UTC).

    This version of the page has been revised. Besides normal editing, the reason for revision may have been that this version contains factual inaccuracies, vandalism, or material not compatible with the Creative Commons Attribution-ShareAlike License.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki