Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 See also  





2 References  














Lithobraking






Bahasa Indonesia
Magyar
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




Print/export  



















Appearance
   

 






From Wikipedia, the free encyclopedia
 


This is an old revision of this page, as edited by George Leung (talk | contribs)at07:27, 13 September 2019. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
(diff)  Previous revision | Latest revision (diff) | Newer revision  (diff)

Lithobraking is a landing technique used by unmanned space vehicles to safely reach the surface of a celestial body while reducing landing speed by impact with the body's surface.

Mars Pathfinder lithobraking airbag test

The word was probably coined as a whimsical adaptation of aerobraking, which is the process of slowing a space vehicle by the use of aerodynamic drag in a planet's atmosphere. Lithos is a Greek word meaning "rock" or "stone," similarly used in the word lithosphere.

Preparations for lithobraking involve protecting the probe with sufficient cushioning to withstand an impact with the surface and come to rest undamaged. The first successful lithobraking was achieved by the Soviet Luna 9 probe resulting in the first soft landing on the Moon. Unlike the US Surveyor probes that relied entirely on retrorockets, first Luna landers used a combination of retrorockets and gas-filled cushioning bags to reach the lunar surface safely. Soviet and US landers used airbag-like lithobraking for Mars landing missions as well. Alternatively due to extremely dense atmosphere on Venus later generation Venera landers used hard umbrella-like aerobraker in combination with shock absorbers.

Incoming angles are made shallow enough such that the impact has the characteristic of a glancing blow, rather than a direct impact on the surface. In the case of bodies without a sufficiently thick atmosphere (e.g., Mars), lithobraking is typically accompanied by the use of other techniques like retrorocket braking or the use of heat shields and parachutes to reduce speed prior to impact. The Mars Pathfinder and Mars Exploration Rover programs have used this approach successfully.

Alternatively, the incoming velocity can be used to enable the probe to penetrate the surface. This approach can be tried on bodies with low gravitation, such as comets and asteroids, or on planets with atmospheres (by using only small parachutes, or no parachutes at all). Several such missions have been launched, including penetrators on the two Phobos probe landers targeted for Mars' moon Phobos and ones for Mars itself on Mars 96 and Deep Space 2, but so far none have succeeded. The cancelled LUNAR-A probe would have carried penetrators to the Moon.

Lithobraking as a method for de-orbiting a spacecraft has not been used due to the extremely high orbital velocities of most bodies (e.g. for the Moon it is over 7000 km/h). However, some small moons and asteroids have very low gravity and it could conceivably be used there (e.g. Phobos has an escape velocity of 40 km/h.)

Certain concepts involve the spacecraft in an orbit tangent to the surface of the body in question, and "docking" with a magnetically levitated (maglev) train, and the train then slowing.[1] This qualifies as lithobraking, as the reaction mass is the planet itself. This technique requires extremely precise guidance and control, in addition to a large infrastructure, and is thus not yet a viable option – although it may be in the future. An advantage to this method is that it can also launch spacecraft, without needing propellant.

Lithobraking is also used as a humorous euphemism for the result of a spacecraft crashing into the surface of a body with no measures to ensure its survival, either by accident or with intent.[2] This usage is popular among fans of the game Kerbal Space Program, where unintentional use of lithobraking is a common gameplay experience, and is reference in the Kerbal Space Program 2 announcement trailer, where the tagline is "Lithobraking near you in 2020"

See also

References

  1. ^ Binder, A. B. "Lunar Landing via a Linear Accelerator".
  • ^ Ryan Whitwam (30 April 2015). "NASA's MESSENGER probe is crashing into Mercury today". Extreme Tech.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Lithobraking&oldid=915433457"

    Category: 
    Spacecraft propulsion
    Hidden categories: 
    Articles needing additional references from August 2007
    All articles needing additional references
     



    This page was last edited on 13 September 2019, at 07:27 (UTC).

    This version of the page has been revised. Besides normal editing, the reason for revision may have been that this version contains factual inaccuracies, vandalism, or material not compatible with the Creative Commons Attribution-ShareAlike License.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki