Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 References  





2 External links  














MERIS: Difference between revisions






Eesti
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




Print/export  



















Appearance
   

 





Help
 

From Wikipedia, the free encyclopedia
 


Browse history interactively
 Previous editNext edit 
Content deleted Content added
Icairns (talk | contribs)
76,837 edits
dab degree
m Added categories.
Line 17: Line 17:

[[Category:Spectrometers]]

[[Category:Spectrometers]]

[[Category:Spacecraft instruments]]

[[Category:Spacecraft instruments]]

[[Category:Earth observation satellites]]

[[Category:Satellite meteorology and remote sensing]]


Revision as of 20:09, 15 May 2006

MEdium Resolution Imaging Spectrometer (MERIS) is one of the main instruments on-board the European Space Agency (ESA)'s Envisat platform.

This instrument is composed of five cameras disposed side by side, each equipped with a pushbroom spectrometer. These spectrometers use two-dimensional CCDs. One of the sides of the detector is oriented perpendicular to the trajectory of the satellite and simultaneously collects, through the front optics, observations for a line of points at the Earth's surface (or in the atmosphere). The displacement of the platform along its orbit, combined with a short integration time, generate data that can later be used to create two-dimensional images. A light dispersing system separates the various wavelengths (colors) composing the incoming radiation at the entrance of the instrument and directs these on the detector along the second dimension, i.e., along track. These spectrometers acquire data in a large number of spectral bands, but, for technical reasons, only 16 of them are actually transmitted to the ground segment (one of which is required for the low-level processing of the raw data). This instrument thus provides useful data in 15 spectral bands, which are actually programmable in position, width and gain. In practice, these technical characteristics are kept constant most of the time to allow a large number of systematic or operational missions.

The intrinsic spatial resolution of the detectors provides for samples every 300 m near nadir at the Earth's surface, and the pushbroom design avoids or minimizes the distortions (e.g., bow tie effects) typical of scanning instruments. This is known as the 'Full Resolution (FR)' product. The more common 'Reduced Resolution (RR)' products are generated by aggregating the FR data to a nominal resolution of 1200 m. The total field of view of MERIS is 68.5 degrees around nadir (yielding a swath width of 1150 km), which is sufficient to collect data for the entire planet every 3 days (in equatorial regions). Polar regions are visited more frequently due to the convergence of orbits.

The primary objective of MERIS is to observe the color of the ocean, both in the open ocean (clear or Case I waters) and in coastal zones (turbid or Case II waters). These observations are used to derive estimates of the concentration of chlorophyll and sediments in suspension in the water, for instance. These measurements are useful to study the oceanic component of the global carbon cycle and the productivity of these regions, amongst other applications. The characterization of atmospheric properties (gaseous absorption and aerosol scattering) is essential to derive accurate information over the oceans because they contribute to the bulk of the signal measured (under clear skies) or simply because clouds prevent the observation of the underlying surface. Last but not least, this instrument is very useful to monitor the evolution of terrestrial environments, such as the fraction of the solar radiation effectively used by plants in the process of photosynthesis, amongst many others applications.

References


Retrieved from "https://en.wikipedia.org/w/index.php?title=MERIS&oldid=53376620"

Categories: 
Spectrometers
Spacecraft instruments
Earth observation satellites
Satellite meteorology and remote sensing
 



This page was last edited on 15 May 2006, at 20:09 (UTC).

This version of the page has been revised. Besides normal editing, the reason for revision may have been that this version contains factual inaccuracies, vandalism, or material not compatible with the Creative Commons Attribution-ShareAlike License.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki