Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 History  





2 Surface properties  





3 Orbital characteristics  





4 Notes  





5 References  





6 External links  














Moons of Haumea: Difference between revisions






Afrikaans
العربية
Avañe'
Azərbaycanca
 / Bân-lâm-gú
Беларуская
Беларуская (тарашкевіца)
Català
Čeština
Ελληνικά
Español
Esperanto
Euskara
فارسی
Français
Galego

Հայերեն
Bahasa Indonesia
Latviešu
Lietuvių


Norsk bokmål
Polski
Português
Română
Русский

Simple English
کوردی
Српски / srpski
Suomi
Tagalog

Türkçe
Українська
Tiếng Vit


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 





This is a good article. Click here for more information.
Help
 

From Wikipedia, the free encyclopedia
 


Browse history interactively
 Previous edit
Content deleted Content added
m Reverted edits by 106.211.143.141 (talk) (HG) (3.4.4)
 
(45 intermediate revisions by 23 users not shown)
Line 1: Line 1:

{{short description|Natural satellites orbiting dwarf planet Haumea}}

[[File:2003 EL61 Haumea, with moons.jpg|thumb|200px|[[Keck telescope|Keck]] image of Haumea and its moons. Hiʻiaka is above Haumea (center), and Namaka is directly below.]]

{{good article}}

[[File:Haumea ring moons diagram.png|400px|thumb|Scale diagram of Haumea, the ring, and orbits of its two moons]]

{{Use dmy dates|date=July 2019}}

The [[Solar System#Trans-Neptunian region|outer Solar System]] [[dwarf planet]] [[Haumea]] has two known [[Natural satellite|moons]], Hiʻiaka and Namaka, named after [[Hawaiian mythology|Hawaiian]] goddesses. These small moons were discovered in 2005, from observations of Haumea made at the large telescopes of the [[W. M. Keck Observatory]] in Hawaii.

[[File:Haumea-moons-hubble.gif|thumb|Animation of Haumea and its moons, imaged by [[Hubble Space Telescope|Hubble]] in 2008. Hiʻiaka is the brighter object around Haumea (center), and Namaka is the dimmer object below.]]

[[File:Haumea ring moons diagram.png|thumb|Scale diagram of Haumea, the ring, and orbits of its two moons]]

The [[dwarf planet]] [[Haumea]] has two known [[Natural satellite|moons]], '''[[Hiʻiaka (moon)|Hiʻiaka]]''' and '''[[Namaka (moon)|Namaka]]''', named after [[Hawaiian mythology|Hawaiian]] goddesses. These small moons were discovered in 2005, from observations of Haumea made at the large telescopes of the [[W. M. Keck Observatory]] in Hawaii.



Haumea's moons are unusual in a number of ways. They are thought to be part of [[Haumea family|its extended collisional family]], which formed billions of years ago from icy debris after a large impact disrupted Haumea's [[volatiles|ice]] [[Mantle (geology)|mantle]]. Hiʻiaka, the larger, outermost moon, has large amounts of pure water ice on its surface, which is rare among [[Kuiper belt]] objects.<ref name="Barkume2006"/> Namaka, about one tenth the mass, has an orbit with surprising dynamics: it is unusually [[Orbital eccentricity|eccentric]] and appears to be greatly influenced by the larger satellite.

Haumea's moons are unusual in a number of ways. They are thought to be part of [[Haumea family|its extended collisional family]], which formed billions of years ago from icy debris after a large impact disrupted Haumea's [[Volatile (astrogeology)|ice]] [[Mantle (geology)|mantle]]. Hiʻiaka, the larger, outermost moon, has large amounts of pure water ice on its surface, which is rare among [[Kuiper belt]] objects.<ref name="Barkume2006" /> Namaka, about one tenth the mass, has an orbit with surprising dynamics: it is unusually [[Orbital eccentricity|eccentric]] and appears to be greatly influenced by the larger satellite.



==History==

== History ==

Two small [[natural satellite|satellites]] were discovered around [[Haumea]] (which was at that time still designated 2003 EL<sub>61</sub>) through observations using the [[W.M. Keck Observatory]] by a [[Caltech]] team in 2005.

Two small [[natural satellite|satellites]] were discovered around [[Haumea]] (which was at that time still designated 2003 EL<sub>61</sub>) through observations using the [[W.M. Keck Observatory]] by a [[Caltech]] team in 2005.

The outer and larger of the two satellites was discovered January26, 2005,<ref>

The outer and larger of the two satellites was discovered 26 January 2005,<ref>{{cite journal

{{cite journal

|author=M. E. Brown

|author=M. E. Brown

|author-link=Michael E. Brown

|author-link=Michael E. Brown

Line 25: Line 27:

|author14=D. Summers

|author14=D. Summers

|author15=P. Wizinowich

|author15=P. Wizinowich

|last-author-amp=yes

|title=Keck Observatory Laser Guide Star Adaptive Optics Discovery and Characterization of a Satellite to the Large Kuiper Belt Object 2003 EL61

|title=Keck Observatory Laser Guide Star Adaptive Optics Discovery and Characterization of a Satellite to the Large Kuiper Belt Object 2003 EL61

|journal=The Astrophysical Journal Letters

|journal=The Astrophysical Journal Letters

|volume=632|date=2005-09-02|pages=L45–L48

|volume=632|issue=1

|date=2005-09-02|pages=L45–L48

|bibcode=2005ApJ...632L..45B

|bibcode=2005ApJ...632L..45B

|doi=10.1086/497641

|doi=10.1086/497641

|s2cid=119408563

|url=http://authors.library.caltech.edu/34486/1/1538-4357_632_1_L45.pdf

|url=http://authors.library.caltech.edu/34486/1/1538-4357_632_1_L45.pdf

}}</ref> and formally designated S/2005 (2003 EL<sub>61</sub>) 1, though nicknamed "[[Rudolph the Red-Nosed Reindeer|Rudolph]]" by the Caltech team.<ref>

}}</ref> and formally designated S/2005 (2003 EL<sub>61</sub>) 1, though nicknamed "[[Rudolph the Red-Nosed Reindeer|Rudolph]]" by the Caltech team.<ref>{{cite news

{{cite news

|author=Kenneth Chang

|author=Kenneth Chang

|title=Piecing Together the Clues of an Old Collision, Iceball by Iceball

|title=Piecing Together the Clues of an Old Collision, Iceball by Iceball

Line 39: Line 41:

|work=[[New York Times]]

|work=[[New York Times]]

|date=2007-03-20

|date=2007-03-20

|accessdate=2008-10-12

|access-date=2008-10-12

}}</ref> The smaller, inner satellite of Haumea was discovered on June 30, 2005, formally termed S/2005 (2003 EL<sub>61</sub>) 2, and nicknamed "[[Blitzen the Reindeer|Blitzen]]".<ref name="RagozzineDPS08"/> On September 7, 2006, both satellites were numbered and admitted into the official minor planet catalogue as (136108) 2003 EL<sub>61</sub> I and II, respectively.

}}</ref> The smaller, inner satellite of Haumea was discovered on30 June 2005, formally termed S/2005 (2003 EL<sub>61</sub>) 2, and nicknamed "[[Blitzen the Reindeer|Blitzen]]".<ref name="RagozzineDPS08" />On7 September 2006, both satellites were numbered and admitted into the official minor planet catalogue as (136108) 2003 EL<sub>61</sub> I and II, respectively.



The permanent names of these moons were announced, together with that of 2003 EL<sub>61</sub>, by the [[International Astronomical Union]] on September17, 2008: (136108) Haumea I Hiʻiaka and (136108) Haumea II Namaka.<ref name="iaunews">

The permanent names of these moons were announced, together with that of 2003 EL<sub>61</sub>, by the [[International Astronomical Union]] on 17 September 2008: (136108) Haumea I Hiʻiaka and (136108) Haumea II Namaka.<ref name="iaunews">{{cite web

|title=News Release – IAU0807: IAU names fifth dwarf planet Haumea

{{cite web

|title=News Release - IAU0807: IAU names fifth dwarf planet Haumea

|work=International Astronomical Union

|work=International Astronomical Union

|date=2008-09-17

|date=2008-09-17

|url=http://www.iau.org/public_press/news/release/iau0807/

|url=http://www.iau.org/public_press/news/release/iau0807/

|accessdate=2008-09-18

|access-date=2008-09-18

}}</ref> Each moon was named after a daughter of [[Haumea (mythology)|Haumea]], the Hawaiian goddess of fertility and childbirth. [[Hiʻiaka]] is the goddess of [[hula|dance]] and patroness of the [[Big Island of Hawaii]], where the [[Mauna Kea Observatory]] is located.<ref name="usgs">

}}</ref> Each moon was named after a daughter of [[Haumea (mythology)|Haumea]], the Hawaiian goddess of fertility and childbirth. [[Hiʻiaka]] is the goddess of [[hula|dance]] and patroness of the [[Big Island of Hawaii]], where the [[Mauna Kea Observatory]] is located.<ref name="usgs">{{cite news

{{cite news

|publisher=US Geological Survey Gazetteer of Planetary Nomenclature

|publisher=US Geological Survey Gazetteer of Planetary Nomenclature

|title=Dwarf Planets and their Systems

|title=Dwarf Planets and their Systems

|url=http://planetarynames.wr.usgs.gov/append7.html#DwarfPlanets

|url=http://planetarynames.wr.usgs.gov/append7.html#DwarfPlanets

|accessdate=2008-09-17

|access-date=2008-09-17

}}</ref> [[Nāmaka]] is the goddess of water and the sea; she cooled her sister [[Pele (deity)|Pele]]'s lava as it flowed into the sea, turning it into new land.<ref name="craig"/>

}}</ref> [[Nāmaka]] is the goddess of water and the sea; she cooled her sister [[Pele (deity)|Pele]]'s lava as it flowed into the sea, turning it into new land.<ref name="craig" />



In her legend, Haumea's many children came from different parts of her body.<ref name="craig">

In her legend, Haumea's many children came from different parts of her body.<ref name="craig">{{cite book

{{cite book

|author=Robert D. Craig

|author=Robert D. Craig

|title=Handbook of Polynesian Mythology

|title=Handbook of Polynesian Mythology

|publisher=ABC-CLIO

|publisher=ABC-CLIO

|date=2004

|date=2004

|url=https://books.google.com/?id=LOZuirJWXvUC&pg=PA128&dq=haumea

|url=https://books.google.com/books?id=LOZuirJWXvUC&q=haumea&pg=PA128

|page=128

|page=128

|isbn=1-57607-894-9

|isbn=1-57607-894-9

}}</ref> The dwarf planet [[Haumea]] appears to be almost entirely made of rock, with only a superficial layer of ice; most of the original icy mantle is thought to have been blasted off by the impact that spun Haumea into its current high speed of rotation, where the material formed into the small [[Kuiper belt]] objects in [[Haumea family|Haumea's collisional family]]. There could therefore be additional outer moons, smaller than Namaka, that have not yet been detected. However, [[Hubble Space Telescope|HST]] observations have confirmed that no other moons brighter than 0.25% of the brightness of Haumea exist within the closest tenth of the distance (0.1% of the volume) where they could be held by Haumea's gravitational influence (its [[Hill sphere]]).<ref name="Ragozzine&Brown2009">

}}</ref> The dwarf planet [[Haumea]] appears to be almost entirely made of rock, with only a superficial layer of ice; most of the original icy mantle is thought to have been blasted off by the impact that spun Haumea into its current high speed of rotation, where the material formed into the small [[Kuiper belt]] objects in [[Haumea family|Haumea's collisional family]]. There could therefore be additional outer moons, smaller than Namaka, that have not yet been detected. However, [[Hubble Space Telescope|HST]] observations have confirmed that no other moons brighter than 0.25% of the brightness of Haumea exist within the closest tenth of the distance (0.1% of the volume) where they could be held by Haumea's gravitational influence (its [[Hill sphere]]).<ref name="Ragozzine&Brown2009">{{cite journal

{{cite journal

|last=Ragozzine |first=D.

|last=Ragozzine |first=D.

|author2=Brown, M.E.

|author2=Brown, M.E.

Line 78: Line 76:

|volume=137

|volume=137

|issue=6

|issue=6

|pages=4766

|pages=4766–4776

|s2cid=15310444

}}</ref> This makes it unlikely that any more exist.

}}</ref> This makes it unlikely that any more exist.



==Surface properties==

== Surface properties ==

[[File:Haumea Hubble.png|thumb|[[Hubble Space Telescope|Hubble]] image of Haumea (center), Hiʻiaka (above), and Namaka (below).]]

Hiʻiaka is the outer and, at roughly 350&nbsp;km in diameter, the larger and brighter of the two moons.<ref name="Brown2006-discovery">{{cite journal| doi = 10.1086/501524| last1 = Brown| first1 = M. E.| authorlink = Michael E. Brown| last2 = Van Dam| first2 = M. A.| last3 = Bouchez| first3 = A. H.| last4 = Le Mignant| first4 = D.| last5 = Campbell| first5 = R. D.| last6 = Chin| first6 = J. C. Y.| last7 = Conrad| first7 = A.| last8 = Hartman| first8 = S. K.| last9 = Johansson| first9 = E. M.| last10 = Lafon| first10 = R. E.| last11 = Rabinowitz| first11 = D. L. Rabinowitz| last12 = Stomski| first12 = P. J. Jr.| last13 = Summers| first13 = D. M.| last14 = Trujillo| first14 = C. A.| last15 = Wizinowich| first15 = P. L.| year = 2006| title = Satellites of the Largest Kuiper Belt Objects| journal = The Astrophysical Journal| volume = 639| issue = 1| pages = L43–L46| pmid = | pmc = | arxiv = astro-ph/0510029| bibcode = 2006ApJ...639L..43B| url = http://web.gps.caltech.edu/~mbrown/papers/ps/gab.pdf| format = PDF| accessdate = 2011-10-19| ref = {{sfnRef|Brown Van Dam et al.|2006}}

Hiʻiaka is the outer and, at roughly 310&nbsp;km in diameter, the larger and brighter of the two moons.<ref name="Brown2006-discovery">{{cite journal| doi = 10.1086/501524| last1 = Brown| first1 = M. E.| author-link = Michael E. Brown| last2 = Van Dam| first2 = M. A.| last3 = Bouchez| first3 = A. H.| last4 = Le Mignant| first4 = D.| last5 = Campbell| first5 = R. D.| last6 = Chin| first6 = J. C. Y.| last7 = Conrad| first7 = A.| last8 = Hartman| first8 = S. K.| last9 = Johansson| first9 = E. M.| last10 = Lafon| first10 = R. E.| last11 = Rabinowitz| first11 = D. L. Rabinowitz| last12 = Stomski| first12 = P. J. Jr.| last13 = Summers| first13 = D. M.| last14 = Trujillo| first14 = C. A.| last15 = Wizinowich| first15 = P. L.| year = 2006| title = Satellites of the Largest Kuiper Belt Objects| journal = The Astrophysical Journal| volume = 639| issue = 1| pages = L43–L46| arxiv = astro-ph/0510029| bibcode = 2006ApJ...639L..43B| s2cid = 2578831| url = http://web.gps.caltech.edu/~mbrown/papers/ps/gab.pdf| access-date = 19 October 2011| ref = {{sfnRef|Brown Van Dam et al.|2006}}

}}</ref> Strong absorption features observed at 1.5, 1.65 and 2 [[micrometre|µm]] in its [[infrared]] spectrum are consistent with nearly pure crystalline water ice covering much of its surface. The unusual spectrum, and its similarity to absorption lines in the spectrum of Haumea, led Brown and colleagues to conclude that it was unlikely that the system of moons was formed by the gravitational capture of passing Kuiper belt objects into orbit around the dwarf planet: instead, the Haumean moons must be fragments of Haumea itself.<ref name="largest">

}}</ref> Strong absorption features observed at 1.5, 1.65 and 2 [[micrometre|μm]] in its [[infrared]] spectrum are consistent with nearly pure crystalline water ice covering much of its surface. The unusual spectrum, and its similarity to absorption lines in the spectrum of Haumea, led Brown and colleagues to conclude that it was unlikely that the system of moons was formed by the gravitational capture of passing Kuiper belt objects into orbit around the dwarf planet: instead, the Haumean moons must be fragments of Haumea itself.<ref name="largest">{{cite web

{{cite web

|title=The largest Kuiper belt objects

|title=The largest Kuiper belt objects

|author=Michael E. Brown

|author=Michael E. Brown

|work=CalTech

|work=Caltech

|url=http://www.gps.caltech.edu/~mbrown/papers/ps/kbochap.pdf

|url=http://www.gps.caltech.edu/~mbrown/papers/ps/kbochap.pdf

|accessdate=2008-09-19

|access-date=2008-09-19

}}</ref>

}}</ref>



The sizes of both moons are calculated with the assumption that they have the same infrared [[albedo]] as Haumea, which is reasonable as their spectra show them to have the same surface composition. Haumea's albedo has been measured by the [[Spitzer Space Telescope]]: from ground-based telescopes, the moons are too small and close to Haumea to be seen independently.<ref name="Fraser09"/> Based on this common albedo, the inner moon, Namaka, which is a tenth the mass of Hiʻiaka, would be about 170&nbsp;km in diameter.<ref name="Johnston">

The sizes of both moons are calculated with the assumption that they have the same infrared [[albedo]] as Haumea, which is reasonable as their spectra show them to have the same surface composition. Haumea's albedo has been measured by the [[Spitzer Space Telescope]]: from ground-based telescopes, the moons are too small and close to Haumea to be seen independently.<ref name="Fraser09" /> Based on this common albedo, the inner moon, Namaka, which is a tenth the mass of Hiʻiaka, would be about 170&nbsp;km in diameter.<ref name="Johnston">{{cite web

{{cite web

|url=http://www.johnstonsarchive.net/astro/astmoons/am-136108.html

|url=http://www.johnstonsarchive.net/astro/astmoons/am-136108.html

|title=(136108) Haumea, Hi'iaka, and Namaka

|title=(136108) Haumea, Hi'iaka, and Namaka

|publisher=Johnstonsarchive.net

|publisher=Johnstonsarchive.net

|accessdate=2009-02-01

|access-date=2009-02-01

}}</ref>

}}</ref>



The [[Hubble Space Telescope]] (HST) has adequate angular resolution to separate the light from the moons from that of Haumea. Photometry of the Haumea triple system with HST's [[Near Infrared Camera and Multi-Object Spectrometer|NICMOS camera]] has confirmed that the spectral line at 1.6&nbsp;µm that indicates the presence of water ice is at least as strong in the moons' spectra as in Haumea's spectrum.<ref name="Fraser09">

The [[Hubble Space Telescope]] (HST) has adequate angular resolution to separate the light from the moons from that of Haumea. Photometry of the Haumea triple system with HST's [[Near Infrared Camera and Multi-Object Spectrometer|NICMOS camera]] has confirmed that the spectral line at 1.6&nbsp;μm that indicates the presence of water ice is at least as strong in the moons' spectra as in Haumea's spectrum.<ref name="Fraser09">{{cite journal

{{cite journal

|last=Fraser |first=W.C.

|last=Fraser |first=W.C.

|author2=Brown, M.E.

|author2=Brown, M.E.

Line 107: Line 104:

|title=NICMOS Photometry of the Unusual Dwarf Planet Haumea and its Satellites

|title=NICMOS Photometry of the Unusual Dwarf Planet Haumea and its Satellites

|journal=The Astrophysical Journal Letters

|journal=The Astrophysical Journal Letters

|volume=695 |pages=L1

|volume=695 |issue=1

|pages=L1–L3

|arxiv=0903.0860

|arxiv=0903.0860

|bibcode=2009ApJ...695L...1F

|bibcode=2009ApJ...695L...1F

|doi=10.1088/0004-637X/695/1/L1

|doi=10.1088/0004-637X/695/1/L1

|s2cid=119273925

}}</ref>

}}</ref>



The moons of Haumea are too faint to detect with telescopes smaller than about 2 metres in [[aperture]], though Haumea itself has a visual magnitude of 17.5, making it the third-brightest object in the Kuiper belt after [[Pluto]] and [[Makemake]], and easily observable with a large amateur telescope.

The moons of Haumea are too faint to detect with telescopes smaller than about 2 metres in [[aperture]], though Haumea itself has a visual magnitude of 17.5, making it the third-brightest object in the Kuiper belt after [[Pluto]] and [[Makemake]], and easily observable with a large amateur telescope.



==Orbital characteristics==

== Orbital characteristics ==

{{multiple image |direction=vertical |align=right |total_width=300

[[File:TheKuiperBelt Orbits Haumea moons.svg|thumb|300px|A view of the orbits of Hiʻiaka (blue) and Namaka (green)]]

|image1=TheKuiperBelt Orbits Haumea moons.svg |caption1=A view of the orbits of Hiʻiaka (blue) and Namaka (green)

Hiʻiaka orbits Haumea nearly circularly every 49&nbsp;days.<ref name="Brown2006-discovery"/> Namaka orbits Haumea in 18 days in a moderately elliptical, [[Osculating orbit|non-Keplerian]] orbit, and as of 2008 was inclined 13° with respect to Hiʻiaka, which [[Perturbation (astronomy)|perturbs]] its orbit.<ref name="RagozzineDPS08"/> Because the impact that created the moons of Haumea is thought to have occurred in the early history of the Solar System,<ref name="BrownBarkume2007">

|image2=Haumea mutual events illustration.png |caption2=Illustration of mutual events between Haumea and Namaka during 2009–2011

{{cite journal

}}

Hiʻiaka orbits Haumea nearly circularly every 49&nbsp;days.<ref name="Brown2006-discovery" /> Namaka orbits Haumea in 18 days in a moderately elliptical, [[Osculating orbit|non-Keplerian]] orbit, and as of 2008 was inclined 13° with respect to Hiʻiaka, which [[Perturbation (astronomy)|perturbs]] its orbit.<ref name="RagozzineDPS08" /> Because the impact that created the moons of Haumea is thought to have occurred in the early history of the Solar System,<ref name="BrownBarkume2007">{{cite journal

|author=Michael E. Brown |author2= Kristina M. Barkume |author3=Darin Ragozzine |author4=Emily L. Schaller

|author=Michael E. Brown |author2= Kristina M. Barkume |author3=Darin Ragozzine |author4=Emily L. Schaller

|date=2007-01-19

|date=2007-01-19

Line 127: Line 128:

|pmid=17361177

|pmid=17361177

|bibcode = 2007Natur.446..294B

|bibcode = 2007Natur.446..294B

}}</ref> over the following billions of years it should have been [[tidal acceleration|tidally damped]] into a more circular orbit. Namaka's orbit has likely been disturbed by [[orbital resonance]]s with the more-massive Hiʻiaka due to converging orbits as they moved outward from Haumea due to [[tidal acceleration|tidal dissipation]].<ref name="RagozzineDPS08"/> They may have been caught in and then escaped from orbital resonance several times; they currently are in or at least close to an 8:3 [[orbital resonance|resonance]].<ref name="RagozzineDPS08"/> This resonance strongly perturbs Namaka's orbit, which has a current [[Precession (astronomy)#Anomalistic precession|precession]] of its [[argument of periapsis]] by about −6.5° per year, a precession period of 55 years.<ref name="Ragozzine&Brown2009"/>

|s2cid= 4430027 |url= https://authors.library.caltech.edu/34346/2/nature05619-s1.pdf }}</ref> over the following billions of years it should have been [[tidal acceleration|tidally damped]] into a more circular orbit. Namaka's orbit has likely been disturbed by [[orbital resonance]]s with the more-massive Hiʻiaka due to converging orbits as they moved outward from Haumea due to [[tidal acceleration|tidal dissipation]].<ref name="RagozzineDPS08" /> They may have been caught in and then escaped from orbital resonance several times; they currently are in or at least close to an 8:3 [[orbital resonance|resonance]].<ref name="RagozzineDPS08" /> This resonance strongly perturbs Namaka's orbit, which has a current [[Apsidal precession|precession]] of its [[argument of periapsis]] by about −6.5° per year, a precession period of 55 years.<ref name="Ragozzine&Brown2009" />



At present, the orbits of the Haumean moons appear almost exactly edge-on from Earth, with Namaka having periodically [[occultation|occulted]] Haumea from 2009 to 2011.<ref name="IAU8949">

At present, the orbits of the Haumean moons appear almost exactly edge-on from Earth, with Namaka having periodically [[occultation|occulted]] Haumea from 2009 to 2011.<ref name="IAU8949">{{cite web

{{cite web

|url = http://www.cfa.harvard.edu/~fabrycky/EL61/

|url = http://www.cfa.harvard.edu/~fabrycky/EL61/

|title = IAU Circular 8949

|title = IAU Circular 8949

|date = 2008-09-17

|date = 17 September 2008

|publisher = International Astronomical Union

|publisher = International Astronomical Union

|accessdate = 2008-12-06

|access-date = 2008-12-06

|deadurl = yes

|url-status = dead

|archiveurl = https://web.archive.org/web/20090111105134/http://www.cfa.harvard.edu/~fabrycky/EL61/

|archive-url = https://web.archive.org/web/20090111105134/http://www.cfa.harvard.edu/~fabrycky/EL61/

|archivedate = 11 January 2009

|archive-date = 11 January 2009

|df = dmy-all

|df = dmy-all

}}</ref><ref name="events09">

}}</ref><ref name="events09">{{cite web

{{cite web

|url=http://web.gps.caltech.edu/~mbrown/2003EL61/mutual/

|url=http://web.gps.caltech.edu/~mbrown/2003EL61/mutual/

|title=Mutual events of Haumea and Namaka

|title=Mutual events of Haumea and Namaka

|author=Brown, M.

|author=Brown, M.

|accessdate=2009-02-18

|access-date=2009-02-18

}}</ref> Observation of such transits would provide precise information on the size and shape of Haumea and its moons, as [[Solar eclipses on Pluto|happened in the late 1980s]] with Pluto and [[Charon (moon)|Charon]].<ref>

}}</ref> Observation of such transits would provide precise information on the size and shape of Haumea and its moons, as [[Solar eclipses on Pluto|happened in the late 1980s]] with Pluto and [[Charon (moon)|Charon]].<ref>{{cite book

{{cite book

|author=Lucy-Ann Adams McFadden |author2=Paul Robert Weissman |author3=Torrence V. Johnson

|author=Lucy-Ann Adams McFadden |author2=Paul Robert Weissman |author3=Torrence V. Johnson

|title=Encyclopedia of the Solar System

|title=Encyclopedia of the Solar System

|url=https://books.google.com/?id=G7UtYkLQoYoC&pg=PA545&lpg=PA545&dq=mutual+event+pluto

|url=https://books.google.com/books?id=G7UtYkLQoYoC&q=mutual+event+pluto&pg=PA545

|accessdate=2008-10-17

|access-date=2008-10-17

|isbn=978-0-12-088589-3

|isbn=978-0-12-088589-3

|date=2007

|date=2007

}}</ref> The tiny change in brightness of the system during these occultations required at least a [[Optical telescope#Astronomical research telescopes|medium]]-[[aperture]] [[List of optical telescopes|professional telescope]] for detection.<ref name="FabryckyDPS08">

}}</ref> The tiny change in brightness of the system during these occultations required at least a [[Optical telescope#Astronomical research telescopes|medium]]-[[aperture]] [[List of optical telescopes|professional telescope]] for detection.<ref name="FabryckyDPS08">{{cite journal |author=D. C. Fabrycky |display-authors=4 |author2=M. J. Holman |author3=D. Ragozzine |author4=M. E. Brown |author5=T. A. Lister |author6=D. M. Terndrup |author7=J. Djordjevic |author8=E. F. Young |author9=L. A. Young |author10=R. R. Howell |title=Mutual Events of 2003 EL61 and its Inner Satellite |pages=36.08 |journal=AAS DPS Conference 2008 |bibcode=2008DPS....40.3608F |year=2008 |volume=40 }}</ref> Hiʻiaka last occulted Haumea in 1999, a few years before its discovery, and will not do so again for some 130 years.<ref name="shadows">{{cite web

{{cite web |author=D. C. Fabrycky |display-authors=4 |author2=M. J. Holman |author3=D. Ragozzine |author4=M. E. Brown |author5=T. A. Lister |author6=D. M. Terndrup |author7=J. Djordjevic |author8=E. F. Young |author9=L. A. Young |author10=R. R. Howell |title=Mutual Events of 2003 EL61 and its Inner Satellite |url=http://adsabs.harvard.edu/abs/2008DPS....40.3608F |work=AAS DPS conference 2008 |accessdate=14 November 2018}}</ref> Hiʻiaka last occulted Haumea in 1999, a few years before its discovery, and will not do so again for some 130 years.<ref name="shadows">

{{cite web

|title=Moon shadow Monday (fixed)

|title=Moon shadow Monday (fixed)

|author=Mike Brown

|author=Mike Brown

Line 162: Line 158:

|publisher=Mike Brown's Planets

|publisher=Mike Brown's Planets

|url=http://www.mikebrownsplanets.com/2008/05/moon-shadow-monday-fixed.html

|url=http://www.mikebrownsplanets.com/2008/05/moon-shadow-monday-fixed.html

|accessdate=2008-09-27

|access-date=2008-09-27

}}</ref> However, in a situation unique among [[regular moon|regular satellite]]s, the great [[Precession (astronomy)#Anomalistic precession|torquing]] of Namaka's orbit by Hiʻiaka preserved the viewing angle of Namaka–Haumea transits for several more years.<ref name="RagozzineDPS08">

}}</ref> However, in a situation unique among [[regular moon|regular satellites]], the great [[Apsidal precession|torquing]] of Namaka's orbit by Hiʻiaka preserved the viewing angle of Namaka–Haumea transits for several more years.<ref name="RagozzineDPS08">{{cite web

{{cite web

|author = D. Ragozzine

|author = D. Ragozzine

|author2 = M. E. Brown

|author2 = M. E. Brown

Line 172: Line 167:

|url = http://www.abstractsonline.com/viewer/viewAbstract.asp?CKey={421E1C09-F75A-4ED0-916C-8C0DDB81754D}&MKey={35A8F7D5-A145-4C52-8514-0B0340308E94}&AKey={AAF9AABA-B0FF-4235-8AEC-74F22FC76386}&SKey={545CAD5F-068B-4FFC-A6E2-1F2A0C6ED978}

|url = http://www.abstractsonline.com/viewer/viewAbstract.asp?CKey={421E1C09-F75A-4ED0-916C-8C0DDB81754D}&MKey={35A8F7D5-A145-4C52-8514-0B0340308E94}&AKey={AAF9AABA-B0FF-4235-8AEC-74F22FC76386}&SKey={545CAD5F-068B-4FFC-A6E2-1F2A0C6ED978}

|work = AAS DPS conference 2008

|work = AAS DPS conference 2008

|access-date = 17 October 2008

|accessdate = 2008-10-17

|deadurl = yes

|url-status = dead

|archiveurl = https://web.archive.org/web/20130718182107/http://www.abstractsonline.com/viewer/viewAbstract.asp?CKey=%7B421E1C09-F75A-4ED0-916C-8C0DDB81754D%7D&MKey=%7B35A8F7D5-A145-4C52-8514-0B0340308E94%7D&AKey=%7BAAF9AABA-B0FF-4235-8AEC-74F22FC76386%7D&SKey=%7B545CAD5F-068B-4FFC-A6E2-1F2A0C6ED978%7D

|archive-url = https://web.archive.org/web/20130718182107/http://www.abstractsonline.com/viewer/viewAbstract.asp?CKey=%7B421E1C09-F75A-4ED0-916C-8C0DDB81754D%7D&MKey=%7B35A8F7D5-A145-4C52-8514-0B0340308E94%7D&AKey=%7BAAF9AABA-B0FF-4235-8AEC-74F22FC76386%7D&SKey=%7B545CAD5F-068B-4FFC-A6E2-1F2A0C6ED978%7D

|archivedate = 18 July 2013

|archive-date = 18 July 2013

|df = dmy-all

|df = dmy-all

}}</ref><ref name="FabryckyDPS08"/>

}}</ref><ref name="FabryckyDPS08" />



{| class="wikitable" style="margin:1em auto;" border="1"

<center>

{| class="wikitable" border="1"

|- style="background:#efefef;"

|- style="background:#efefef;"

! Label <br /> {{refn | group = note | Label refers to the [[Roman numerals|Roman numeral]] attributed to each moon in order of their discovery.<ref name="Gazetteer">{{Cite web|title=Planet and Satellite Names and Discoverers|work=Gazetteer of Planetary Nomenclature|publisher=USGS Astrogeology|url=https://planetarynames.wr.usgs.gov/Page/Planets|access-date=2022-06-23}}</ref>}}

! Order<br><ref group=note>Order refers to the position with respect to their average distance from Haumea.</ref><br>

! colspan="3" | Name<br>([[Help:IPA for English|pronunciation]])<br><ref group=note>Label refers to the [[Roman numeral]] attributed to each moon in order of their discovery.</ref><br>

! colspan="2" | Name<br />([[Help:IPA for English|pronunciation]])

! Mean diameter<br>(km)

! Mean diameter<br />(km)

! Mass<br>(×10<sup>18</sup>&nbsp;kg)

! Mass<br />(×10<sup>18</sup>&nbsp;kg)

! Semi-major<br>axis (km)

! Semi-major<br />axis (km)

! Orbital period<br>(days)

! Orbital period<br />(days)

! Eccentricity

! Eccentricity

! Inclination (°){{refn | group = note |Orbital inclinations of Namaka and Hiʻiaka are with respect to Haumea's orbit.<!-- Axial tilt of Haumea equals ≈ 126° to Haumea's orbit and 81.2° or 78.9° to [[ecliptic]]. Usually inclinations of regular satellites are in the plane of primary body rotation. -->}}

! Inclination (°)

! Discovery date

! Discovery date

|- style="text-align:center; background:white;"

|- style="text-align:center; background:white;"

|

| 0 || colspan=3| (ring) || ≈&thinsp;70 || || {{val|2285|8}}<ref name="Ortiz2017"/> || {{val|0.489438|0.000012}}<ref name="Ortiz2017">{{cite journal|display-authors= 3|last1= Ortiz|first1=J. L.|last2= Santos-Sanz|first2=P.|last3= Sicardy|first3= B.|last4= Benedetti-Rossi|first4= G.|last5= Bérard|first5= D.|last6= Morales|first6= N.|last7= Duffard|first7= R.|last8= Braga-Ribas|first8=F.|last9= Hopp|first9=U.|last10= Ries|first10=C.|last11= Nascimbeni|first11=V.|last12= Marzari|first12=F.|last13= Granata|first13=V.|last14= Pál|first14=A.|last15= Kiss|first15=C.|last16= Pribulla|first16=T.|last17=Komžík|first17=R.|last18= Hornoch|first18=K.|last19=Pravec|first19=P.|last20= Bacci|first20=P.|last21= Maestripieri|first21= M.|last22= Nerli|first22=L.|last23=Mazzei|first23=L.|last24= Bachini|first24=M.|last25=Martinelli|first25= F.|last26=Succi|first26= G.|last27=Ciabattari|first27=F.|last28= Mikuz|first28=H.|last29=Carbognani|first29= A.|last30=Gaehrken|first30=B.|last31= Mottola|first31=S.|last32= Hellmich|first32=S.|last33=Rommel|first33=F. L.|last34=Fernández-Valenzuela|first34=E.|last35= Bagatin|first35=A. Campo|last36=Cikota|first36= S.|last37=Cikota|first37=A.|last38=Lecacheux|first38=J.|last39=Vieira-Martins|first39=R.|last40=Camargo|first40=J. I. B.|last41=Assafin|first41=M.|last42= Colas|first42=F.|last43=Behrend|first43= R.|last44=Desmars|first44=J.|last45=Meza|first45=E.|last46=Alvarez-Candal|first46=A.|last47=Beisker|first47=W.|last48= Gomes-Junior|first48=A. R.|last49= Morgado|first49=B. E.|last50=Roques|first50=F.|last51= Vachier|first51=F.|last52=Berthier|first52= J.|last53=Mueller|first53=T. G.|last54=Madiedo|first54=J. M.|last55=Unsalan|first55=O.|last56= Sonbas|first56=E.|last57=Karaman|first57= N.|last58=Erece|first58=O.|last59=Koseoglu|first59=D. T.|last60=Ozisik|first60=T.|last61= Kalkan|first61=S.|last62= Guney|first62=Y.|last63=Niaei|first63=M. S.|last64=Satir|first64=O.|last65= Yesilyaprak|first65=C.|last66= Puskullu|first66=C.|last67=Kabas|first67= A.|last68=Demircan|first68= O.|last69=Alikakos|first69=J.|last70= Charmandaris|first70=V.|last71=Leto|first71=G.|last72=Ohlert|first72=J.|last73=Christille|first73=J. M.|last74=Szakáts|first74=R.|last75=Farkas|first75=A. Takácsné|last76=Varga-Verebélyi|first76=E.|last77= Marton|first77=G.|last78=Marciniak|first78= A.|last79=Bartczak|first79=P.|last80=Santana-Ros|first80=T.|last81=Butkiewicz-Bąk|first81=M.|last82=Dudziński|first82=G.|last83=Alí-Lagoa|first83=V.|last84= Gazeas|first84=K.|last85= Tzouganatos|first85=L.|last86=Paschalis|first86=N.|last87=Tsamis|first87=V.|last88=Sánchez-Lavega|first88=A.|last89=Pérez-Hoyos|first89=S.|last90= Hueso|first90=R.|last91=Guirado|first91=J. C.|last92=Peris|first92=V.|last93=Iglesias-Marzoa|first93=R.|title=The size, shape, density and ring of the dwarf planet Haumea from a stellar occultation|journal= Nature|volume= 550|issue= 7675|year= 2017|pages= 219–223|doi= 10.1038/nature24051|pmid= 29022593|bibcode=2017Natur.550..219O}}</ref><ref name="ring-period" group=lower-alpha>Based on a 3:1 resonance with Haumea's rotation period.</ref> || || ≈&thinsp;0 || January 2017

| colspan="2" | (ring) || ≈&thinsp;70 || || {{val|2285|8}}<ref name="Ortiz2017" /> || {{val|0.489438|0.000012}}<ref name="Ortiz2017">{{cite journal|display-authors= 3|last1= Ortiz|first1=J. L.|last2= Santos-Sanz|first2=P.|last3= Sicardy|first3= B.|last4= Benedetti-Rossi|first4= G.|last5= Bérard|first5= D.|last6= Morales|first6= N.|last7= Duffard|first7= R.|last8= Braga-Ribas|first8=F.|last9= Hopp|first9=U.|last10= Ries|first10=C.|last11= Nascimbeni|first11=V.|last12= Marzari|first12=F.|last13= Granata|first13=V.|last14= Pál|first14=A.|last15= Kiss|first15=C.|last16= Pribulla|first16=T.|last17=Komžík|first17=R.|last18= Hornoch|first18=K.|last19=Pravec|first19=P.|last20= Bacci|first20=P.|last21= Maestripieri|first21= M.|last22= Nerli|first22=L.|last23=Mazzei|first23=L.|last24= Bachini|first24=M.|last25=Martinelli|first25= F.|last26=Succi|first26= G.|last27=Ciabattari|first27=F.|last28= Mikuz|first28=H.|last29=Carbognani|first29= A.|last30=Gaehrken|first30=B.|last31= Mottola|first31=S.|last32= Hellmich|first32=S.|last33=Rommel|first33=F. L.|last34=Fernández-Valenzuela|first34=E.|last35= Bagatin|first35=A. Campo|last36=Cikota|first36= S.|last37=Cikota|first37=A.|last38=Lecacheux|first38=J.|last39=Vieira-Martins|first39=R.|last40=Camargo|first40=J. I. B.|last41=Assafin|first41=M.|last42= Colas|first42=F.|last43=Behrend|first43= R.|last44=Desmars|first44=J.|last45=Meza|first45=E.|last46=Alvarez-Candal|first46=A.|last47=Beisker|first47=W.|last48= Gomes-Junior|first48=A. R.|last49= Morgado|first49=B. E.|last50=Roques|first50=F.|last51= Vachier|first51=F.|last52=Berthier|first52= J.|last53=Mueller|first53=T. G.|last54=Madiedo|first54=J. M.|last55=Unsalan|first55=O.|last56= Sonbas|first56=E.|last57=Karaman|first57= N.|last58=Erece|first58=O.|last59=Koseoglu|first59=D. T.|last60=Ozisik|first60=T.|last61= Kalkan|first61=S.|last62= Guney|first62=Y.|last63=Niaei|first63=M. S.|last64=Satir|first64=O.|last65= Yesilyaprak|first65=C.|last66= Puskullu|first66=C.|last67=Kabas|first67= A.|last68=Demircan|first68= O.|last69=Alikakos|first69=J.|last70= Charmandaris|first70=V.|last71=Leto|first71=G.|last72=Ohlert|first72=J.|last73=Christille|first73=J. M.|last74=Szakáts|first74=R.|last75=Farkas|first75=A. Takácsné|last76=Varga-Verebélyi|first76=E.|last77= Marton|first77=G.|last78=Marciniak|first78= A.|last79=Bartczak|first79=P.|last80=Santana-Ros|first80=T.|last81=Butkiewicz-Bąk|first81=M.|last82=Dudziński|first82=G.|last83=Alí-Lagoa|first83=V.|last84= Gazeas|first84=K.|last85= Tzouganatos|first85=L.|last86=Paschalis|first86=N.|last87=Tsamis|first87=V.|last88=Sánchez-Lavega|first88=A.|last89=Pérez-Hoyos|first89=S.|last90= Hueso|first90=R.|last91=Guirado|first91=J. C.|last92=Peris|first92=V.|last93=Iglesias-Marzoa|first93=R.|title=The size, shape, density and ring of the dwarf planet Haumea from a stellar occultation|journal= Nature|volume= 550|issue= 7675|year= 2017|pages= 219–223|doi= 10.1038/nature24051|pmid= 29022593|arxiv= 2006.03113|bibcode=2017Natur.550..219O|hdl= 10045/70230|s2cid= 205260767|hdl-access=free}}</ref><ref name="ring-period" group=lower-alpha>Based on a 3:1 resonance with Haumea's rotation period.</ref> || || [approximately same as Haumea's equator] || January 2017

|- style="text-align:center; background:white;"

|- style="text-align:center; background:white;"

| 1 || Haumea&nbsp;II || Namaka || {{IPA|/nɑːˈmɑːkə/}} || ≈&thinsp;170? || {{val|1.79|1.48}}<ref name="Ragozzine&Brown2009"/> <br>(≈&thinsp;0.05% Haumea) || {{val|25657|91}}<ref name="Ragozzine&Brown2009"/>|| {{val|18.2783|0.0076}}<ref name="Ragozzine&Brown2009"/><ref group=note name=kepler>Using [[Kepler's laws of planetary motion#Third law|Kepler's third law]].</ref> || {{val|0.249|0.015}}<ref name="Ragozzine&Brown2009"/><ref <ref group=note name=perturb>As of 2008: Namaka's eccentricity and inclination are [[Kozai mechanism|variable]] due to perturbation.</ref> || {{val|113.013|0.075}}<ref name="Ragozzine&Brown2009"/> <br>({{val|13.41|0.08}} from Hiʻiaka)<ref group=note name=perturb/>|| June 2005

| II || '''[[Namaka (moon)|Namaka]]''' || {{IPA|/nɑːˈmɑːkə/}} || ≈&thinsp;170? || {{val|1.79|1.48}}<ref name="Ragozzine&Brown2009" /> <br />(≈&thinsp;0.05% Haumea) || {{val|25657|91}}<ref name="Ragozzine&Brown2009" />|| {{val|18.2783|0.0076}}<ref name="Ragozzine&Brown2009" /><ref group=note name=kepler>Using [[Kepler's laws of planetary motion#Third law|Kepler's third law]].</ref> || {{val|0.249|0.015}}<ref name="Ragozzine&Brown2009" /><ref <ref group=note name=perturb>As of 2008: Namaka's eccentricity and inclination are [[Kozai mechanism|variable]] due to perturbation.</ref> || {{val|113.013|0.075}}<ref name="Ragozzine&Brown2009" /> <br />({{val|13.41|0.08}} from Hiʻiaka)<ref group=note name=perturb />|| June 2005

|- style="text-align:center; background:white;"

|- style="text-align:center; background:white;"

| 2 || Haumea&nbsp;I || Hiʻiaka || {{IPA|/hiːʔiːˈɑːkə/}} || ≈&thinsp;310 || {{val|17.9|1.1}}<ref name="Ragozzine&Brown2009"/> <br>(≈&thinsp;0.5% Haumea) || {{val|49880|198}}<ref name="Ragozzine&Brown2009"/> || {{val|49.462|0.083}}<ref name="Ragozzine&Brown2009"/><ref group=note name=kepler/> || {{val|0.0513|0.0078}}<ref name="Ragozzine&Brown2009"/> || {{val|126.356|0.064}}<ref name="Ragozzine&Brown2009"/> || January 2005

| I || '''[[Hiʻiaka (moon)|Hiʻiaka]]''' || {{IPA|/hiːʔiːˈɑːkə/}} || ≈&thinsp;310 || {{val|17.9|1.1}}<ref name="Ragozzine&Brown2009" /> <br />(≈&thinsp;0.5% Haumea) || {{val|49880|198}}<ref name="Ragozzine&Brown2009" /> || {{val|49.462|0.083}}<ref name="Ragozzine&Brown2009" /><ref group=note name=kepler /> || {{val|0.0513|0.0078}}<ref name="Ragozzine&Brown2009" /> || {{val|126.356|0.064}}<ref name="Ragozzine&Brown2009" /> || January 2005

|}

|}</center>



== Namaka ==

== Notes ==

{{Infobox planet

| name = Namaka

| image = 2003 EL61 Haumea, with moons.jpg

| caption = Namaka is the faint spot near the bottom of the photo, directly below [[Haumea]] (center), in this [[Keck telescope]] image.

| discoverer = [[Michael E. Brown]], <br> [[Chad Trujillo]], <br> [[David Rabinowitz]], et al.

| discovered = 30 June 2005

| mpc_name = Haumea II Namaka

| pronounced = {{IPAc-en|n|ɑː|ˈ|m|ɑː|k|ə}} {{respell|nah|MAH|kə}}<ref name="pron" group=lower-alpha>The [[Hawaiian language|Hawaiian]] pronunciation is {{IPA-haw|naːˈmɐkə|}}.</ref>

| alt_names = {{mp|(136108) 2003 EL|61}}&nbsp;II, <br> {{mp|S|2005|2003 EL|61|2}}

| orbit_ref = <ref name="SatelliteOrbits"/>

| epoch = [[Julian day|JD]] 2454615.0

| semimajor = {{val|25657|91|u=km}}<ref name=SatelliteOrbits/>

| eccentricity = {{val|0.249|0.015}} (in 2009; [[Kozai mechanism|variable]])

| period = {{val|18.2783|0.0076|u=d}}<ref name=SatelliteOrbits/>

| inclination = {{val|113.013|0.075|u=°}}<br>{{val|13.41|0.08|u=°}} relative to [[Hiʻiaka (moon)|Hiʻiaka]] (in 2008; [[Kozai mechanism|variable]])

| asc_node = {{val|205.016|0.228|u=°}}

| arg_peri = {{val|178.9|2.3|u=°}}

| mean_anomaly = {{val|178.5|1.7|u=°}}

| satellite_of = {{dp|Haumea}}

| mean_radius = ~85 km (if albedo is same as primary's 0.7±0.1)

| mass = 1.79 ± 1.48{{e|18}} [[Kilogram|kg]]<ref name="SatelliteOrbits"/> <br> (0.05% the mass of Haumea)

| density = (assumed to be near 1 g/cm<sup>3</sup>)

| single_temperature = 32±3 [[Kelvin|K]]

| rotation =

| axial_tilt =

| albedo = {{val|0.8|0.2}}<ref name=johnston/><ref name=RagozzineBrown2009/>

| magnitude = 21.9 (4.6 difference from primary's 17.3)<ref name=johnston/>

}}


Namaka is the smaller, inner moon of the dwarf planet Haumea. It is named after [[Nāmaka]], the goddess of the sea in [[Hawaiian mythology]] and one of the daughters of [[Haumea (mythology)|Haumea]].


=== Discovery ===

Namaka was discovered on 30 June 2005 and announced on 29 November 2005.<ref name="IAUC_8636" /> It was nicknamed "[[Blitzen the Reindeer|Blitzen]]" by the discovery team before being assigned an official name.


=== Physical characteristics ===

Namaka is only 1.5% as bright as its parent dwarf planet Haumea<ref name="Barkume2006" /> and is about 0.05% its mass. If it turns out to have a similar [[albedo]], it would be about 170&nbsp;km in diameter.<ref name=johnston/> Photometric observations indicate that its surface is made of water ice.<ref name="Barkume2006" /> Mutual events between 2009 and 2011<ref name="events09"/> were expected to improve the knowledge of the orbits and masses of the components of the Haumean system,<ref name=RagozzineBrown2009/> but interpreting those observations was greatly complicated by the unexpected non-tidally locked spin state of Hiʻiaka. Further observations of Hiʻiaka might allow to determine its rotation period and spin state more precisely, at which point it should be possible to remove its effect from the data obtained in 2009.<ref>{{Cite journal|title=The Short Rotation Period of Hi'iaka, Haumea's Largest Satellite|journal=The Astronomical Journal|volume=152|issue=6|pages=195|language=en|access-date=|arxiv=1610.04305|last1=Hastings|first1=Danielle M|last2=Ragozzine|first2=Darin|last3=Fabrycky|first3=Daniel C|last4=Burkhart|first4=Luke D|last5=Fuentes|first5=Cesar|last6=Margot|first6=Jean-Luc|last7=Brown|first7=Michael E|last8=Holman|first8=Matthew|year=2016|doi=10.3847/0004-6256/152/6/195|bibcode=2016AJ....152..195H}}</ref><ref>{{Cite journal|arxiv=1204.3923|last1=Grundy|first1=W. M|title=Mutual Events in the Cold Classical Transneptunian Binary System Sila and Nunam|journal=Icarus|volume=220|pages=74|last2=Benecchi|first2=S. D|last3=Rabinowitz|first3=D. L|last4=Porter|first4=S. B|last5=Wasserman|first5=L. H|last6=Skiff|first6=B. A|last7=Noll|first7=K. S|last8=Verbiscer|first8=A. J|last9=Buie|first9=M. W|last10=Tourtellotte|first10=S. W|last11=Stephens|first11=D. C|last12=Levison|first12=H. F|year=2012|doi=10.1016/j.icarus.2012.04.014|bibcode=2012Icar..220...74G}}</ref>


== Hiʻiaka ==

{{Infobox planet

| name = Hiʻiaka

| image = 2003 EL61 Haumea, with moons.jpg

| caption = Hiʻiaka is above Haumea (center) in this [[Keck telescope]] image.

| discoverer = [[Michael E. Brown]], <br> [[Chad Trujillo]], <br> [[David Rabinowitz]], et al.

| discovered = 26 January 2005

| mpc_name = Haumea I Hiʻiaka

| alt_names = {{mp|(136108) 2003 EL|61}}&nbsp;I, <br>{{mp|S|2005|2003 EL|61|1}}

| pronounced = {{IPAc-en|ˌ|h|iː|ʔ|i|ˈ|ɑː|k|ə}}<ref name="pron2" group=lower-alpha>The [[Hawaiian language|Hawaiian]] pronunciation is {{IPA-haw|ˈhiʔiˈjɐkə|}}.</ref>

| orbit_ref = <ref name=RagozzineBrown2009/>

| semimajor = {{val|49880|198|ul=km}}

| eccentricity = {{val|0.0513|0.0078}}

| period = {{val|49.12|0.03|u=days}}

| inclination = {{val|126.356|0.064|s=°}}

| satellite_of = {{dp|Haumea}}

| mean_radius = {{val|p=~|160|u=km}}<ref name=RagozzineBrown2009/>

| mass = {{val|1.79|0.11|e=19|ul=kg}}<ref name=RagozzineBrown2009/> (0.45% of Haumea)

| density = {{val|p=~|1|ul=g/cm3}}

| single_temperature = {{val|32|3|ul=K}}

| rotation =

| axial_tilt =

| albedo = {{val|0.8|0.07}}<ref name=johnston/><ref name=RagozzineBrown2009/>

| magnitude = 20.3 (3.0 difference from primary's 17.3)<ref name=johnston/>

}}


Hiʻiaka is the larger, outer moon of the [[dwarf planet]] [[Haumea]].


=== Discovery and naming ===

Hiʻiaka was the first [[natural satellite|satellite]] discovered around Haumea. It is named after one of the daughters of [[Haumea (mythology)|Haumea]], [[Hiʻiaka]], the patron goddess of the [[Big Island of Hawaii]], though at first it had gone by the nickname "[[Rudolph the Red-Nosed Reindeer|Rudolph]]" by its discovery team. It orbits once every {{val|49.12|0.03|u=days}} at a distance of {{val|49880|198|ul=km}}, with an eccentricity of {{val|0.0513|0.0078}} and an inclination of {{val|126.356|0.064|s=°}}.


=== Physical characteristics ===


==== Size and brightness ====

Its measured brightness is {{val|5.9|0.5|s=%}}, translating into a diameter of about 22% of its primary, or in the range of {{val|320|u=km}}, assuming similar infrared albedo.<ref name=RagozzineBrown2009/> To put this in perspective, if Hi'iaka were in the asteroid belt, it would be larger than all but the [[List of notable asteroids#Largest by diameter|four]] largest asteroids, after [[1 Ceres]], [[2 Pallas]], [[4 Vesta]], and [[10 Hygiea]]. In spite of its relatively large size, however, lightcurve studies suggest that Hi'iaka is not a gravitationally collapsed spheroid; they further suggest that Hi'iaka is not tidally locked and has a rotation period of about 9.8 hours.<ref>{{Cite web|url=http://www.planetary.org/blogs/guest-blogs/2016/1017-rapidly-rotating-regular-satellites-and-tides.html|title=Rapidly Rotating Regular Satellites and Tides|author=Ragozzine, D.|date=2016-10-17|website=www.planetary.org|language=en|access-date=2018-11-14}}</ref>


==== Mass ====

The mass of Hiʻiaka is estimated to be {{val|1.79|0.11|e=19|ul=kg}} using precise relative [[astrometry]] from [[Hubble Telescope]] and [[Keck Telescope]] and applying [[3-body problem|3-body]], point-mass model to the Haumean system.<ref name=RagozzineBrown2009/>


==== Spectrum and composition ====

The near infrared spectrum of Hiʻiaka is dominated by water-ice absorption bands, which means that its surface is made mainly of water ice. The presence of the band centered at {{val|1.65|u=μm}} indicates that the surface water ice is primarily in the [[crystalline]] form. Currently it is unclear why water ice on the surface has not turned into [[amorphous]] form as would be expected due to its constant irradiation by [[cosmic ray]]s.<ref name=Dumas2011/>


==Notes==

{{reflist

{{reflist

| group = note

| group = note

Line 285: Line 200:

{{notelist}}

{{notelist}}



==References==

== References ==

{{Reflist|30em| refs =

{{Reflist|30em| refs =

<ref name="Barkume2006">{{Cite journal | last1 = Barkume | first1 = K. M. | last2 = Brown | first2 = M. E. | last3 = Schaller | first3 = E. L. | title = Water Ice on the Satellite of Kuiper Belt Object 2003 EL61 | doi = 10.1086/503159 | journal = The Astrophysical Journal | volume = 640 | issue = 1 | pages = L87–L89 | year = 2006 | url = http://www.gps.caltech.edu/~mbrown/papers/ps/rudolph.pdf|arxiv = astro-ph/0601534 |bibcode = 2006ApJ...640L..87B | s2cid = 17831967 }}</ref>

<ref name="SatelliteOrbits">

{{cite journal| doi = 10.1088/0004-6256/137/6/4766| last1 = Ragozzine| first1 = D.| last2 = Brown| first2 = M. E.| year = 2009| title = Orbits and Masses of the Satellites of the Dwarf Planet Haumea (2003 EL61)| journal = The Astronomical Journal| volume = 137| issue = 6| pages = 4766| pmid = | pmc = | arxiv = 0903.4213| bibcode = 2009AJ....137.4766R| ref = harv}}

</ref>


<ref name="RagozzineBrown2009">

{{cite journal| doi = 10.1088/0004-6256/137/6/4766| last1 = Ragozzine| first1 = D.| last2 = Brown| first2 = M. E.| year = 2009| title = Orbits and Masses of the Satellites of the Dwarf Planet Haumea (2003 EL61)| journal = The Astronomical Journal| volume = 137| issue = 6| pages = 4766| pmid = | pmc = | arxiv = 0903.4213| bibcode = 2009AJ....137.4766R| ref = harv}}

</ref>


<ref name="Dumas2011">{{Cite journal | last1 = Dumas | first1 = C.| last2 = Carry | first2 = B.| last3 = Hestroffer | first3 = D.| last4 = Merlin | first4 = F.| title = High-contrast observations of (136108) Haumea | doi = 10.1051/0004-6361/201015011 | journal = Astronomy & Astrophysics | volume = 528 | pages = A105 | year = 2011 | pmid = | pmc = |bibcode = 2011A&A...528A.105D |arxiv = 1101.2102 }}</ref>


<ref name=johnston>

{{cite web

| url = http://www.johnstonsarchive.net/astro/astmoons/am-136108.html

| author = Wm. Robert Johnston

| title = (136108) Haumea, Hi'iaka, and Nāmaka

| date = 2008-09-17

| accessdate = 2008-09-18

}}

}}

</ref>



== External links ==

<ref name="IAUC_8636">

* [https://web.archive.org/web/20090327050619/http://www.gps.caltech.edu/~darin/haumeasatsanim.gif Animation of the orbits of Haumea's moons]

{{cite web

* [[International Year of Astronomy]] 2009 [http://365daysofastronomy.org/2009/03/31/march-31st/ podcast: Dwarf Planet Haumea (Darin Ragozzine)]

|last = Green

|first = Daniel W. E.

|date = 1 December 2005

|title = IAUC 8636

|url = http://www.cbat.eps.harvard.edu/iauc/08600/08636.html

|access-date=14 November 2018

}}

</ref>


<ref name="Barkume2006">{{Cite journal | last1 = Barkume | first1 = K. M. | last2 = Brown | first2 = M. E. | last3 = Schaller | first3 = E. L. | title = Water Ice on the Satellite of Kuiper Belt Object 2003 EL61 | doi = 10.1086/503159 | journal = The Astrophysical Journal | volume = 640 | pages = L87–L89 | year = 2006 | pmid = | pmc =| url = http://www.gps.caltech.edu/~mbrown/papers/ps/rudolph.pdf|arxiv = astro-ph/0601534 |bibcode = 2006ApJ...640L..87B }}</ref>

}}


==External links==

* [http://www.gps.caltech.edu/~darin/haumeasatsanim.gif Animation of the orbits of Haumea's moons]

* [[International Year of Astronomy|International Year of Astronomy 2009]] [http://365daysofastronomy.org/2009/03/31/march-31st/ podcast: Dwarf Planet Haumea (Darin Ragozzine)]

* [http://www.gps.caltech.edu/%7Embrown/papers/ps/EL61.pdf Brown's publication describing the discovery of Hiʻiaka]

* [http://www.gps.caltech.edu/%7Embrown/papers/ps/EL61.pdf Brown's publication describing the discovery of Hiʻiaka]

* [http://www.gps.caltech.edu/~mbrown/papers/ps/rudolph.pdf Paper describing the composition of Hiʻiaka]

* [http://www.gps.caltech.edu/~mbrown/papers/ps/rudolph.pdf Paper describing the composition of Hiʻiaka]



{{good article}}

{{Moons of plutoids}}

{{Moons of plutoids}}

{{Haumea}}

{{Haumea}}

{{Solar System moons (compact)}}

{{Solar System moons (compact)}}

{{Solar System}}

{{Solar System}}


{{Use dmy dates|date=September 2010}}



[[Category:Moons of Haumea| ]]

[[Category:Moons of Haumea| ]]


Latest revision as of 17:45, 16 May 2024

Animation of Haumea and its moons, imaged by Hubble in 2008. Hiʻiaka is the brighter object around Haumea (center), and Namaka is the dimmer object below.
Scale diagram of Haumea, the ring, and orbits of its two moons

The dwarf planet Haumea has two known moons, Hiʻiaka and Namaka, named after Hawaiian goddesses. These small moons were discovered in 2005, from observations of Haumea made at the large telescopes of the W. M. Keck Observatory in Hawaii.

Haumea's moons are unusual in a number of ways. They are thought to be part of its extended collisional family, which formed billions of years ago from icy debris after a large impact disrupted Haumea's ice mantle. Hiʻiaka, the larger, outermost moon, has large amounts of pure water ice on its surface, which is rare among Kuiper belt objects.[1] Namaka, about one tenth the mass, has an orbit with surprising dynamics: it is unusually eccentric and appears to be greatly influenced by the larger satellite.

History[edit]

Two small satellites were discovered around Haumea (which was at that time still designated 2003 EL61) through observations using the W.M. Keck Observatory by a Caltech team in 2005. The outer and larger of the two satellites was discovered 26 January 2005,[2] and formally designated S/2005 (2003 EL61) 1, though nicknamed "Rudolph" by the Caltech team.[3] The smaller, inner satellite of Haumea was discovered on 30 June 2005, formally termed S/2005 (2003 EL61) 2, and nicknamed "Blitzen".[4] On 7 September 2006, both satellites were numbered and admitted into the official minor planet catalogue as (136108) 2003 EL61 I and II, respectively.

The permanent names of these moons were announced, together with that of 2003 EL61, by the International Astronomical Union on 17 September 2008: (136108) Haumea I Hiʻiaka and (136108) Haumea II Namaka.[5] Each moon was named after a daughter of Haumea, the Hawaiian goddess of fertility and childbirth. Hiʻiaka is the goddess of dance and patroness of the Big Island of Hawaii, where the Mauna Kea Observatory is located.[6] Nāmaka is the goddess of water and the sea; she cooled her sister Pele's lava as it flowed into the sea, turning it into new land.[7]

In her legend, Haumea's many children came from different parts of her body.[7] The dwarf planet Haumea appears to be almost entirely made of rock, with only a superficial layer of ice; most of the original icy mantle is thought to have been blasted off by the impact that spun Haumea into its current high speed of rotation, where the material formed into the small Kuiper belt objects in Haumea's collisional family. There could therefore be additional outer moons, smaller than Namaka, that have not yet been detected. However, HST observations have confirmed that no other moons brighter than 0.25% of the brightness of Haumea exist within the closest tenth of the distance (0.1% of the volume) where they could be held by Haumea's gravitational influence (its Hill sphere).[8] This makes it unlikely that any more exist.

Surface properties[edit]

Hubble image of Haumea (center), Hiʻiaka (above), and Namaka (below).

Hiʻiaka is the outer and, at roughly 310 km in diameter, the larger and brighter of the two moons.[9] Strong absorption features observed at 1.5, 1.65 and 2 μm in its infrared spectrum are consistent with nearly pure crystalline water ice covering much of its surface. The unusual spectrum, and its similarity to absorption lines in the spectrum of Haumea, led Brown and colleagues to conclude that it was unlikely that the system of moons was formed by the gravitational capture of passing Kuiper belt objects into orbit around the dwarf planet: instead, the Haumean moons must be fragments of Haumea itself.[10]

The sizes of both moons are calculated with the assumption that they have the same infrared albedo as Haumea, which is reasonable as their spectra show them to have the same surface composition. Haumea's albedo has been measured by the Spitzer Space Telescope: from ground-based telescopes, the moons are too small and close to Haumea to be seen independently.[11] Based on this common albedo, the inner moon, Namaka, which is a tenth the mass of Hiʻiaka, would be about 170 km in diameter.[12]

The Hubble Space Telescope (HST) has adequate angular resolution to separate the light from the moons from that of Haumea. Photometry of the Haumea triple system with HST's NICMOS camera has confirmed that the spectral line at 1.6 μm that indicates the presence of water ice is at least as strong in the moons' spectra as in Haumea's spectrum.[11]

The moons of Haumea are too faint to detect with telescopes smaller than about 2 metres in aperture, though Haumea itself has a visual magnitude of 17.5, making it the third-brightest object in the Kuiper belt after Pluto and Makemake, and easily observable with a large amateur telescope.

Orbital characteristics[edit]

A view of the orbits of Hiʻiaka (blue) and Namaka (green)
Illustration of mutual events between Haumea and Namaka during 2009–2011

Hiʻiaka orbits Haumea nearly circularly every 49 days.[9] Namaka orbits Haumea in 18 days in a moderately elliptical, non-Keplerian orbit, and as of 2008 was inclined 13° with respect to Hiʻiaka, which perturbs its orbit.[4] Because the impact that created the moons of Haumea is thought to have occurred in the early history of the Solar System,[13] over the following billions of years it should have been tidally damped into a more circular orbit. Namaka's orbit has likely been disturbed by orbital resonances with the more-massive Hiʻiaka due to converging orbits as they moved outward from Haumea due to tidal dissipation.[4] They may have been caught in and then escaped from orbital resonance several times; they currently are in or at least close to an 8:3 resonance.[4] This resonance strongly perturbs Namaka's orbit, which has a current precession of its argument of periapsis by about −6.5° per year, a precession period of 55 years.[8]

At present, the orbits of the Haumean moons appear almost exactly edge-on from Earth, with Namaka having periodically occulted Haumea from 2009 to 2011.[14][15] Observation of such transits would provide precise information on the size and shape of Haumea and its moons, as happened in the late 1980s with Pluto and Charon.[16] The tiny change in brightness of the system during these occultations required at least a medium-aperture professional telescope for detection.[17] Hiʻiaka last occulted Haumea in 1999, a few years before its discovery, and will not do so again for some 130 years.[18] However, in a situation unique among regular satellites, the great torquing of Namaka's orbit by Hiʻiaka preserved the viewing angle of Namaka–Haumea transits for several more years.[4][17]

Label
[note 1]
Name
(pronunciation)
Mean diameter
(km)
Mass
(×1018 kg)
Semi-major
axis (km)
Orbital period
(days)
Eccentricity Inclination (°)[note 2] Discovery date
(ring) ≈ 70 2285±8[20] 0.489438±0.000012[20][a] [approximately same as Haumea's equator] January 2017
II Namaka /nɑːˈmɑːkə/ ≈ 170? 1.79±1.48[8]
(≈ 0.05% Haumea)
25657±91[8] 18.2783±0.0076[8][note 3] 0.249±0.015[8][note 4] 113.013±0.075[8]
(13.41±0.08 from Hiʻiaka)[note 4]
June 2005
I Hiʻiaka /hiːʔiːˈɑːkə/ ≈ 310 17.9±1.1[8]
(≈ 0.5% Haumea)
49880±198[8] 49.462±0.083[8][note 3] 0.0513±0.0078[8] 126.356±0.064[8] January 2005

Notes[edit]

  1. ^ Label refers to the Roman numeral attributed to each moon in order of their discovery.[19]
  • ^ Orbital inclinations of Namaka and Hiʻiaka are with respect to Haumea's orbit.
  • ^ a b Using Kepler's third law.
  • ^ a b As of 2008: Namaka's eccentricity and inclination are variable due to perturbation.
    1. ^ Based on a 3:1 resonance with Haumea's rotation period.

    References[edit]

    1. ^ Barkume, K. M.; Brown, M. E.; Schaller, E. L. (2006). "Water Ice on the Satellite of Kuiper Belt Object 2003 EL61" (PDF). The Astrophysical Journal. 640 (1): L87–L89. arXiv:astro-ph/0601534. Bibcode:2006ApJ...640L..87B. doi:10.1086/503159. S2CID 17831967.
  • ^ M. E. Brown; A. H. Bouchez; D. Rabinowitz; R. Sari; C. A. Trujillo; M. van Dam; R. Campbell; J. Chin; S. Hardman; E. Johansson; R. Lafon; D. Le Mignant; P. Stomski; D. Summers; P. Wizinowich (2 September 2005). "Keck Observatory Laser Guide Star Adaptive Optics Discovery and Characterization of a Satellite to the Large Kuiper Belt Object 2003 EL61" (PDF). The Astrophysical Journal Letters. 632 (1): L45–L48. Bibcode:2005ApJ...632L..45B. doi:10.1086/497641. S2CID 119408563.
  • ^ Kenneth Chang (20 March 2007). "Piecing Together the Clues of an Old Collision, Iceball by Iceball". New York Times. Retrieved 12 October 2008.
  • ^ a b c d e D. Ragozzine; M. E. Brown; C. A. Trujillo; E. L. Schaller. "Orbits and Masses of the 2003 EL61 Satellite System". AAS DPS conference 2008. Archived from the original on 18 July 2013. Retrieved 17 October 2008.
  • ^ "News Release – IAU0807: IAU names fifth dwarf planet Haumea". International Astronomical Union. 17 September 2008. Retrieved 18 September 2008.
  • ^ "Dwarf Planets and their Systems". US Geological Survey Gazetteer of Planetary Nomenclature. Retrieved 17 September 2008.
  • ^ a b Robert D. Craig (2004). Handbook of Polynesian Mythology. ABC-CLIO. p. 128. ISBN 1-57607-894-9.
  • ^ a b c d e f g h i j k l Ragozzine, D.; Brown, M.E. (2009). "Orbits and Masses of the Satellites of the Dwarf Planet Haumea = 2003 EL61". The Astronomical Journal. 137 (6): 4766–4776. arXiv:0903.4213. Bibcode:2009AJ....137.4766R. doi:10.1088/0004-6256/137/6/4766. S2CID 15310444.
  • ^ a b Brown, M. E.; Van Dam, M. A.; Bouchez, A. H.; Le Mignant, D.; Campbell, R. D.; Chin, J. C. Y.; Conrad, A.; Hartman, S. K.; Johansson, E. M.; Lafon, R. E.; Rabinowitz, D. L. Rabinowitz; Stomski, P. J. Jr.; Summers, D. M.; Trujillo, C. A.; Wizinowich, P. L. (2006). "Satellites of the Largest Kuiper Belt Objects" (PDF). The Astrophysical Journal. 639 (1): L43–L46. arXiv:astro-ph/0510029. Bibcode:2006ApJ...639L..43B. doi:10.1086/501524. S2CID 2578831. Retrieved 19 October 2011.
  • ^ Michael E. Brown. "The largest Kuiper belt objects" (PDF). Caltech. Retrieved 19 September 2008.
  • ^ a b Fraser, W.C.; Brown, M.E. (2009). "NICMOS Photometry of the Unusual Dwarf Planet Haumea and its Satellites". The Astrophysical Journal Letters. 695 (1): L1–L3. arXiv:0903.0860. Bibcode:2009ApJ...695L...1F. doi:10.1088/0004-637X/695/1/L1. S2CID 119273925.
  • ^ "(136108) Haumea, Hi'iaka, and Namaka". Johnstonsarchive.net. Retrieved 1 February 2009.
  • ^ Michael E. Brown; Kristina M. Barkume; Darin Ragozzine; Emily L. Schaller (19 January 2007). "A collisional family of icy objects in the Kuiper belt" (PDF). Nature. 446 (7133): 294–296. Bibcode:2007Natur.446..294B. doi:10.1038/nature05619. PMID 17361177. S2CID 4430027.
  • ^ "IAU Circular 8949". International Astronomical Union. 17 September 2008. Archived from the original on 11 January 2009. Retrieved 6 December 2008.
  • ^ Brown, M. "Mutual events of Haumea and Namaka". Retrieved 18 February 2009.
  • ^ Lucy-Ann Adams McFadden; Paul Robert Weissman; Torrence V. Johnson (2007). Encyclopedia of the Solar System. ISBN 978-0-12-088589-3. Retrieved 17 October 2008.
  • ^ a b D. C. Fabrycky; M. J. Holman; D. Ragozzine; M. E. Brown; et al. (2008). "Mutual Events of 2003 EL61 and its Inner Satellite". AAS DPS Conference 2008. 40: 36.08. Bibcode:2008DPS....40.3608F.
  • ^ Mike Brown (18 May 2008). "Moon shadow Monday (fixed)". Mike Brown's Planets. Retrieved 27 September 2008.
  • ^ "Planet and Satellite Names and Discoverers". Gazetteer of Planetary Nomenclature. USGS Astrogeology. Retrieved 23 June 2022.
  • ^ a b Ortiz, J. L.; Santos-Sanz, P.; Sicardy, B.; et al. (2017). "The size, shape, density and ring of the dwarf planet Haumea from a stellar occultation". Nature. 550 (7675): 219–223. arXiv:2006.03113. Bibcode:2017Natur.550..219O. doi:10.1038/nature24051. hdl:10045/70230. PMID 29022593. S2CID 205260767.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Moons_of_Haumea&oldid=1224171171"

    Categories: 
    Solar System
    Moons of Haumea
    Lists of moons
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Good articles
    Use dmy dates from July 2019
    Pages using multiple image with auto scaled images
    Pages with plain IPA
     



    This page was last edited on 16 May 2024, at 17:45 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki