Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 References  














Optically stimulated luminescence






Français
Polski
Tiếng Vit
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikiversity
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inphysics, optically stimulated luminescence (OSL) is a method for measuring doses from ionizing radiation. It is used in at least two applications:

The method makes use of electrons trapped between the valence and conduction bands in the crystalline structure of certain minerals (most commonly quartz and feldspar).[1] The trapping sites are imperfections of the lattice — impurities or defects. The ionizing radiation produces electron-hole pairs: Electrons are in the conduction band and holes in the valence band. The electrons that have been excited to the conduction band may become entrapped in the electron or hole traps. Under the stimulation of light, the electrons may free themselves from the trap and get into the conduction band. From the conduction band, they may recombine with holes trapped in hole traps. If the centre with the hole is a luminescence center (radiative recombination centre), emission of light will occur. The photons are detected using a photomultiplier tube. The signal from the tube is then used to calculate the dose that the material had absorbed.

The OSL dosimeter provides a new degree of sensitivity by giving an accurate reading as low as 1 mrem for x-ray and gamma ray photons with energies ranging from 5 keV to greater than 40 MeV. The OSL dosimeter's maximum equivalent dose measurement for x-ray and gamma ray photons is 1000 rem. For beta particles with energies from 150 keV to in excess of 10 MeV, dose measurement ranges from 10 mrem to 1000 rem. Neutron radiation with energies of 40 keV to greater than 35 MeV has a dose measurement range from 20 mrem to 25 rem. In diagnostic imaging, the increased sensitivity of the OSL dosimeter makes it ideal for monitoring employees working in low-radiation environments and for pregnant workers.[citation needed]

To carry out OSL dating, mineral grains have to be extracted from the sample. Most commonly these are so-called coarse grains of 100-200 μm or fine grains of 4-11 μm. Occasionally other grain sizes are used.[citation needed]

The difference between radiocarbon dating and OSL is that the former is used to date organic materials, while the latter is used to date minerals. Events that can be dated using OSL are, for example, the mineral's last exposure to sunlight; Mungo Man, Australia's oldest human find, was dated in this manner.[2] It is also used for dating the deposition of geological sediments after they have been transported by air (aeolian sediments) or rivers (fluvial sediments). In archaeology, OSL dating is applied to ceramics: The dated event is the time of their last heating to a high temperature (in excess of 400 °C).

Recent OSL dating of stone tools in Arabia pushed the "out-of-Africa" date hypothesis of human migration back 50,000 years and added a possible path of migration from the African continent to the Arabian peninsula instead of through Europe.[3] [4]

The most widely-used OSL method is called single-aliquot regeneration (SAR).[5]

References[edit]

  1. ^ Rhodes, Edward J. (2011). "Optically stimulated luminescence dating of sediments over the past 200,000 years". Annual Review of Earth and Planetary Sciences. 39: 461–488. Bibcode:2011AREPS..39..461R. doi:10.1146/annurev-earth-040610-133425.
  • ^ "Mungo Man older than thought". cogweb.ucla.edu.
  • ^ "Man Out Of Africa". Financial Times (requires registration). London. 2010-11-27. Archived from the original on 26 March 2022.
  • ^ Schmid, Randolph E. (2011-01-27). "Humans may have left Africa earlier than thought". Archived from the original on January 3, 2016.
  • ^ Murray, A.S.; Wintle, A.G. (2000). "Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol". Radiation Measurements. 32 (1): 57–73. Bibcode:2000RadM...32...57M. doi:10.1016/S1350-4487(99)00253-X.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Optically_stimulated_luminescence&oldid=1232937606"

    Categories: 
    Particle detectors
    Dating methodologies in archaeology
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Articles needing additional references from March 2018
    All articles needing additional references
    All articles with unsourced statements
    Articles with unsourced statements from March 2018
     



    This page was last edited on 6 July 2024, at 12:26 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki