Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Display Devices  





2 System Configuration  





3 Target Materials  





4 Operating Principles  





5 Other Phenomena  





6 Applications  





7 Research Groups  





8 References  














Optoelectrofluidics: Difference between revisions







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




Print/export  



















Appearance
   

 





Help
 

From Wikipedia, the free encyclopedia
 


Browse history interactively
 Previous editNext edit 
Content deleted Content added
m clean up, removed stub tag
No edit summary
Tags: Mobile edit Mobile app edit Android app edit
Line 1: Line 1:

{{Short description|Study of particle or molecule motion and their interactions with optically-induced electric fields and surrounding fluids}}

'''Optoelectrofluidics''', also known as optically induced [[electrohydrodynamics]], refers to the study of the motions of particles or molecules and their interactions with optically-induced electric field and the surrounding fluid.

'''Optoelectrofluidics''', also known as optically induced [[electrohydrodynamics]], refers to the study of the motions of particles or molecules and their interactions with optically-induced electric field and the surrounding fluid.




Revision as of 11:51, 13 October 2023

Optoelectrofluidics, also known as optically induced electrohydrodynamics, refers to the study of the motions of particles or molecules and their interactions with optically-induced electric field and the surrounding fluid.

This concept includes electrothermal vortex, electrophoresis, dielectrophoresis, and electroosmosis induced by combination of optical and electrical energy or by optical-electrical energy transfer.

In 1995, an electrothermal vortices induced by a strong IR (infrared) laser projected into an electric field have been utilized to concentrate microparticles and molecules. In 2000, UV(ultraviolet) pattern projected onto ITO (indium tin oxide) electrode has been applied for patterning colloidal particles. Illumination of the ITO electrode by UV light results in a small increase in the current from the generation of electron-hole pairs at the ITO/water interface. In 2005, optoelectronic tweezers (OET), wherein a photoconductive material was utilized to induce electric field using the optical decrement of electrical resistance on a partially illuminated area, has been reported. After that, many researches in several view-points have been performed as below.

Display Devices

1. DMD(digital micromirror device)-based Optoelectronic Tweezers (OET) : P.Y. Chiou, et al., Nature 436, pp.370-372 (2005)
2. Projector-based Image Dielectrophoresis (iDEP) : Y.-s. Lu, et al., Opt. Quant. Elec. 37, pp.1385-1395 (2006)
3. LCD(liquid crystal display)-based Lab-on-a-Display (LOD) : W. Choi, et al., Microfluid. Nanofluid. 3, pp.217-225 (2007)
4. Lens-integrated LCD-based System : H. Hwang, et al., Electrophoresis 29, pp.1203-1212 (2008)

System Configuration

1. Interactive & Microscope-integrated System : H. Hwang, et al., Electrophoresis 29, pp.1203-1212 (2008)
2. Double Photoconductive Layers : H. Hwang, et al., Appl. Phys. Lett. 92, pp.024108 (2008)
3. Floating Electrode OET : S. Park, et al., Appl. Phys. Lett. 92, pp.151101 (2008)
4. Integration with Electrowetting Device : G.J. Shah, et al., Lab Chip doi:10.1039/b821508a (2009)
5. Optoelectrofluidic Fluorescence Microscopy: H. Hwang and J.-K. Park, Anal. Chem. doi:10.1021/ac901047v (2009)

Target Materials

1. Cultured cells : A.T. Ohta, et al., IEEE J. Sel. Top. Quant. Elec. 13, pp.237-240 (2007)
2. DNA : M. Hoeb, et al., Biophys. J. 93, pp.1032-1038 (2007)
3. Blood cell : H. Hwang, et al., Electrophoresis 29, pp.1203-1212 (2008)
4. Semiconducting nanowires : A. Jamshidi, et al., Nat. Photon. 2, pp.86-89 (2008)
5. Swimming bacteria : W. Choi, et al., Appl. Phys. Lett. 93, pp.143901 (2008)
6. Oocyte : H. Hwang, et al., Biomicrofluidics 3, pp.014103 (2009)
7. Polysaccharide, Protein and Fluorophore : H. Hwang and J.-K. Park, Anal. Chem. doi:10.1021/ac901047v (2009)

Operating Principles

1. Dielectrophoresis (DEP) : Most of the researches above.
2. AC Electro-osmosis (ACEO) : P.-Y. Chiou, et al., J. Microelectromech. Syst. 17, pp.525-531 (2008)
3. Electro-orientation :W. Choi, et al., Appl. Phys. Lett. 93, pp.143901 (2008)
4. Electrothermal flow : A. Mizuno, et al., IEEE Trans. Ind. Appl. 31,pp.464-468 (1995), S.J. Williams, A. Kumar and S. T. Wereley, Lab Chip 8,pp.1879-1882 (2008)
5. Combination of AC Electrokinetics : H. Hwang and J.-K. Park, Lab Chip 9,pp.199-206 (2009), H. Hwang and J.-K. Park, Anal. Chem. doi:10.1021/ac901047v (2009)

6. Optically induced electrohydrodynamic instability (OEHI): Feifei Wang, Haibo Yu, Wenfeng Liang, Lianqing Liu, John D. Mai,Gwo-Bin Lee, Wen Jung Li,Microfluidics and Nanofluidics, Volume 16, Issue 6 , pp 1097–1106

Other Phenomena

1. Surface-Particle Interactions : H. Hwang, et al., Appl. Phys. Lett. 92, pp.024108 (2008)
2. Particle-Particle Interactions : H. Hwang, et al., J. Phys. Chem. B 32, pp. 9903–9908 (2008) doi:10.1021/jp803596r

Applications

1. Microlens Array Fabrication : J.-Y. Huang, Y.-S. Lu and J. A. Teh, Opt. Express 14, pp.10779-10784 (2006)
2. Microparticle Separation : H. Hwang and J.-K. Park, Lab Chip 9,pp.199-206 (2009)
3. In vitro Fertilization : H. Hwang, et al., Biomicrofluidics 3, pp. 014103 (2009)
4. Electroporation : J.K. Valley, et al., Lab Chip doi:10.1039/b821678a (2009)
5. Local Chemical Concentration Control : H. Hwang and J.-K. Park, Anal. Chem. doi:10.1021/ac901047v (2009)
6. Colloidal Assembly : H. Hwang, Y.-H. Park and J.-K. Park, Langmuir 25, pp.6010-6014 (2009)

Research Groups

1. Ming C. Wu's Group : Integrated Photonics Laboratory, UC Berkeley, CA, USA
2. Je-Kyun Park's Group : NanoBiotech Laboratory, KAIST, KOREA
3. P.Y. Chiou's Group : Optoelectronic Biofluidics Laboratory, UCLA, CA, USA
4. Steve Wereley's Group : Microfluidics Laboratory, Purdue University, IN, USA
5. Aloke Kumar's Group : Kumar Biomicrofluidics Laboratory
6. Stuart William's Group : [1]
7. Han-Sheng Chuang's Group : [2]

References


Retrieved from "https://en.wikipedia.org/w/index.php?title=Optoelectrofluidics&oldid=1179934443"

Category: 
Electrodynamics
Hidden categories: 
Articles with short description
Articles with long short description
Short description is different from Wikidata
 



This page was last edited on 13 October 2023, at 11:51 (UTC).

This version of the page has been revised. Besides normal editing, the reason for revision may have been that this version contains factual inaccuracies, vandalism, or material not compatible with the Creative Commons Attribution-ShareAlike License.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki