Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Precipitation  





2 Rain shadowing  





3 Leeward winds  





4 Associated clouds  





5 See also  





6 References  














Orographic lift






العربية
Català
Deutsch
Español
فارسی
Français
Italiano
עברית
Lombard
Nederlands
Norsk bokmål
Norsk nynorsk
Polski
Português
Русский
Suomi
Svenska
Українська
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Agravity wave cloud pattern—analogous to a ship wake—in the downwind zone behind the Île Amsterdam, seen from above over the far southern Indian Ocean. The island generates wave motion in the wind passing over it, creating regularly spaced orographic clouds. The wave crests raise and cool the air to form clouds, while the troughs remain too low for cloud formation. Note that while the wave motion is generated by orographic lift, it is not required. In other words, one cloud often forms at the peak. See wave cloud.

Orographic lift occurs when an air mass is forced from a low elevation to a higher elevation as it moves over rising terrain.[1]: 162  As the air mass gains altitude it quickly cools down adiabatically, which can raise the relative humidity to 100% and create clouds and, under the right conditions, precipitation.[1]: 472 

Orographic lifting can have a number of effects, including precipitation, rain shadowing, leeward winds, and associated clouds.

Precipitation

[edit]
Precipitation induced by orographic lift in Andalusia.

Precipitation induced by orographic lift occurs in many places throughout the world. Examples include:

Windy evening twilight enhanced by the Sun's angle, can visually mimic a tornado resulting from orographic lift

Rain shadowing

[edit]

The highest precipitation amounts are found slightly upwind from the prevailing winds at the crests of mountain ranges, where they relieve and therefore the upward lifting is greatest. As the air descends the lee side of the mountain, it warms and dries, creating a rain shadow. On the lee side of the mountains, sometimes as little as 15 miles (25 km) away from high precipitation zones, annual precipitation can be as low as 8 inches (200 mm) per year.[3]

Areas where this effect is observed include:

Leeward winds

[edit]
Acap cloud (left) and wave clouds

Downslope winds occur on the leeward side of mountain barriers when a stable air mass is carried over the mountain by strong winds that increase in strength with height. Moisture is removed and latent heat released as the air mass is orographically lifted. As the air mass descends, it is compression heated. The warm foehn wind, locally known as the Chinook wind, BergwindorDiablo windorNor'wester depending on the region, provide examples of this type of wind, and are driven in part by latent heat released by orographic-lifting-induced precipitation.[citation needed]

A similar class of winds, the Sirocco, the Bora and Santa Ana winds, are examples where orographic lifting has limited effect since there is limited moisture to remove in the Saharan or other air masses; the Sirocco, Bora and Santa Ana are driven primarily by (adiabatic) compression heating.[citation needed]

Associated clouds

[edit]

As air flows over mountain barriers, orographic lift can create a variety of cloud effects.

Banner cloud formation on the Matterhorn (left) and a lenticular cloud in New Mexico
A view of the Front Range of the Rockies capped by a föhn wall.

See also

[edit]

References

[edit]
  1. ^ a b c d Stull, Roland (2017). Practical Meteorology: An Algebra-based Survey of Atmospheric Science. University of British Columbia. ISBN 978-0-88865-283-6.
  • ^ "The upslope phenomenon".
  • ^ a b c d e f Whiteman, C. David (2000). Mountain Meteorology: Fundamentals and Applications. Oxford University Press. ISBN 0-19-513271-8.
  • ^ Rain Shadows by Don White. Australian Weather News. Willy Weather. Retrieved 24 May 2021.
  • ^ And the outlook for winter is … wet by Kate Doyle from The New Daily. Retrieved 24 May 2021.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Orographic_lift&oldid=1227166044"

    Categories: 
    Land surface effects on climate
    Mountain meteorology
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from July 2023
    Articles with FAST identifiers
    Articles with GND identifiers
    Articles with J9U identifiers
    Articles with LCCN identifiers
     



    This page was last edited on 4 June 2024, at 03:30 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki