Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Historical note  





2 Premises to the mathematical description  





3 Mathematical formulation  



3.1  The one-dimensional one-phase Stefan problem  







4 Applications  





5 See also  





6 Notes  





7 References  



7.1  Historical references  





7.2  Scientific and general references  







8 External links  














Stefan problem






Català
Español

Русский
Slovenščina
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




Print/export  



















Appearance
   

 






From Wikipedia, the free encyclopedia
 


This is an old revision of this page, as edited by JCW-CleanerBot (talk | contribs)at21:26, 18 May 2019 (task, replaced: Metal Mater Trans A.  Metall Mater Trans A). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
(diff)  Previous revision | Latest revision (diff) | Newer revision  (diff)

Inmathematics and its applications, particularly to phase transitions in matter, a Stefan problem (also Stefan task) is a particular kind of boundary value problem for a partial differential equation (PDE), adapted to the case in which a phase boundary can move with time. The classical Stefan problem aims to describe the temperature distribution in a homogeneous medium undergoing a phase change, for example ice passing to water: this is accomplished by solving the heat equation imposing the initial temperature distribution on the whole medium, and a particular boundary condition, the Stefan condition, on the evolving boundary between its two phases. Note that this evolving boundary is an unknown (hyper-)surface: hence, Stefan problems are examples of free boundary problems.

Historical note

The problem is named after Josef Stefan (Jožef Stefan), the Slovenian physicist who introduced the general class of such problems around 1890, in relation to problems of ice formation.[1] This question had been considered earlier, in 1831, by Lamé and Clapeyron.

Premises to the mathematical description

From a mathematical point of view, the phases are merely regions in which the solutions of the underlying PDE are continuous and differentiable up to the order of the PDE. In physical problems such solutions represent properties of the medium for each phase. The moving boundaries (orinterfaces) are infinitesimally thin surfaces that separate adjacent phases; therefore, the solutions of the underlying PDE and its derivatives may suffer discontinuities across interfaces.

The underlying PDE is not valid at phase change interfaces; therefore, an additional condition—the Stefan condition—is needed to obtain closure. The Stefan condition expresses the local velocity of a moving boundary, as a function of quantities evaluated at both sides of the phase boundary, and is usually derived from a physical constraint. In problems of heat transfer with phase change, for instance, the physical constraint is that of conservation of energy, and the local velocity of the interface depends on the heat flux discontinuity at the interface.

Mathematical formulation

The one-dimensional one-phase Stefan problem

Consider a semi-infinite one-dimensional block of ice initially at melting temperature u ≡ 0 for x ∈ [0, +∞). Heat flux of f(t) is introduced at the left boundary of the domain causing the block to melt down leaving an interval [0, s(t)] occupied by water. The melted depth of the ice block, denoted by s(t), is an unknown function of time; the solution to the dimensionless Stefan problem consists of finding u and s such that [2]

Applications

Apart from modelling melting of solids, Stefan problem is also used as a model for the asymptotic behaviour (in time) of more complex problems: for example, Pego[3] uses matched asymptotic expansions to prove that Cahn-Hilliard solutions for phase separation problems behave as solutions to a nonlinear Stefan problem at an intermediate time scale. Additionally, the solution of the Cahn–Hilliard equation for a binary mixture is reasonably comparable with the solution of a Stefan problem.[4] In this comparison, the Stefan problem was solved using a front-tracking, moving-mesh method with homogeneous Neumann boundary conditions at the outer boundary. Also, Stefan problems can be applied to describe phase transformations.[5]

The Stefan problem also has a rich inverse theory: in such problems, the meting depth (orcurveorhypersurface) s is the known datum and the problem is to find uorf.[6]

See also

Notes

  1. ^ (Vuik 1993, p. 157).
  • ^ Daniele Andreucci, "Lecture notes on the Stefan problem", Università di Roma La Sapienza, January 2004
  • ^ R. L. Pego. (1989). Front Migration in the Nonlinear Cahn-Hilliard Equation. Proc. R. Soc. Lond. A.,422:261–278.
  • ^ Vermolen, F. J.; Gharasoo, M. G.; Zitha, P. L. J.; Bruining, J. (2009). "Numerical Solutions of Some Diffuse Interface Problems: The Cahn–Hilliard Equation and the Model of Thomas and Windle". International Journal for Multiscale Computational Engineering. 7 (6): 523–543. doi:10.1615/IntJMultCompEng.v7.i6.40.
  • ^ Alvarenga HD, Van de Putter T, Van Steenberge N, Sietsma J, Terryn H (Apr 2009). "Influence of Carbide Morphology and Microstructure on the Kinetics of Superficial Decarburization of C-Mn Steels". Metall Mater Trans A. 46: 123. Bibcode:2015MMTA...46..123A. doi:10.1007/s11661-014-2600-y.
  • ^ (Kirsh 1996).
  • References

    Historical references

    Scientific and general references


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Stefan_problem&oldid=897712748"

    Category: 
    Partial differential equations
    Hidden categories: 
    Harv and Sfn no-target errors
    Articles needing additional references from July 2013
    All articles needing additional references
    Subscription required using via
    Pages containing links to subscription-only content
    CS1 Russian-language sources (ru)
    CS1: long volume value
     



    This page was last edited on 18 May 2019, at 21:26 (UTC).

    This version of the page has been revised. Besides normal editing, the reason for revision may have been that this version contains factual inaccuracies, vandalism, or material not compatible with the Creative Commons Attribution-ShareAlike License.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki