Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Modern volcanology  



1.1  Techniques  





1.2  Forecasting  







2 History  



2.1  Greco-Roman philosophy  





2.2  Middle Ages  





2.3  Renaissance observations  





2.4  Interaction with religion and mythology  







3 Notable volcanologists  





4 Gallery  





5 See also  





6 References  





7 External links  














Volcanology: Difference between revisions






العربية
Asturianu
Azərbaycanca
 / Bân-lâm-gú
Беларуская
Bikol Central
Български
Boarisch
Brezhoneg
Català
Čeština
Dansk
Deutsch
Eesti
Ελληνικά
Español
Esperanto
Euskara
فارسی
Français
Furlan
Galego

Հայերեն
ि
Hrvatski
Bahasa Indonesia
Íslenska
Italiano
עברית

Қазақша
Кыргызча
Latviešu
Lëtzebuergesch
Lietuvių


Bahasa Melayu
Minangkabau
 / Mìng-dĕ̤ng-nḡ
Nederlands

Norsk bokmål
Norsk nynorsk
Occitan
Oʻzbekcha / ўзбекча

پښتو
Plattdüütsch
Polski
Português
Română
Русский
Sicilianu
Simple English
Slovenčina
کوردی
Српски / srpski
Srpskohrvatski / српскохрватски
Suomi
Svenska
ி

Тоҷикӣ
Türkçe
Українська
Tiếng Vit
Winaray


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




Print/export  







In other projects  



Wikimedia Commons
 
















Appearance
   

 





Help
 

From Wikipedia, the free encyclopedia
 


Browse history interactively
 Previous editNext edit 
Content deleted Content added
→‎See also: added see also link to "Volcano" article
there has been poor use of inline citations in recent additions that are likely accurate
(40 intermediate revisions by 16 users not shown)
Line 1: Line 1:

{{Short description|Study of volcanoes, lava, magma and associated phenomena}}

{{Short description|Study of volcanoes}}

{{distinguish|Volcanism}}

{{distinguish|Volcanism}}

[[File:Sampling lava with hammer and bucket.jpg|thumb|280px|A [[volcanologist]] sampling lava using a rock hammer and a bucket of water]]

[[File:Sampling lava with hammer and bucket.jpg|thumb|280px|A [[volcanologist]] sampling lava using a rock hammer and a bucket of water]]

Line 6: Line 6:

'''Volcanology''' (also spelled '''vulcanology''') is the study of [[volcano]]es, [[lava]], [[magma]] and related [[geology|geological]], [[geophysical]] and [[geochemistry|geochemical]] phenomena ([[volcanism]]). The term ''volcanology'' is derived from the [[Latin language|Latin]] word ''[[Vulcan (mythology)|vulcan]]''. Vulcan was the ancient [[Roman mythology|Roman god]] of fire.

'''Volcanology''' (also spelled '''vulcanology''') is the study of [[volcano]]es, [[lava]], [[magma]] and related [[geology|geological]], [[geophysical]] and [[geochemistry|geochemical]] phenomena ([[volcanism]]). The term ''volcanology'' is derived from the [[Latin language|Latin]] word ''[[Vulcan (mythology)|vulcan]]''. Vulcan was the ancient [[Roman mythology|Roman god]] of fire.



A [[volcanologist]] is a [[geologist]] who studies the eruptive activity and formation of volcanoes and their current and historic eruptions. Volcanologists frequently visit volcanoes, especially active ones, to observe [[volcanic eruption]]s, collect eruptive products including [[tephra]] (such as [[Volcanic ash|ash]] or [[pumice]]), [[Rock (geology)|rock]] and [[lava]] samples. One major focus of enquiry is the prediction of eruptions; there is currently no accurate way to do this, but predicting eruptions, like predicting earthquakes, could save many lives.

A [[volcanologist]] is a [[geologist]] who studies the eruptive activity and formation of volcanoes and their current and historic eruptions. Volcanologists frequently visit volcanoes, especially active ones, to observe [[volcanic eruption]]s, collect eruptive products including [[tephra]] (such as [[Volcanic ash|ash]] or [[pumice]]), [[Rock (geology)|rock]] and [[lava]] samples. One major focus of enquiry is the prediction of eruptions; there is currently no accurate way to do this, but predicting or forecasting eruptions, like predicting earthquakes, could save many lives.



== Modern volcanology ==

== Modern volcanology ==

[[image:Icelandic tephra.JPG|thumb|right|Volcanologist examining [[tephra]] horizons in south-central [[Iceland]].]]

[[image:Icelandic tephra.JPG|thumb|right|Volcanologist examining [[tephra]] horizons in south-central [[Iceland]].]]

[[File:Destructive plate margin.png|thumb|A diagram of a [[destructive plate margin]], where subduction fuels volcanic activity at the subduction zones of tectonic plate boundaries.]]

[[File:Destructive plate margin.png|thumb|A diagram of a [[destructive plate margin]], where subduction fuels volcanic activity at the subduction zones of tectonic plate boundaries.]]

In 1841, the first volcanological observatory, the [[Vesuvius Observatory]], was founded in the [[Kingdom of the Two Sicilies]].<ref>[http://vulcani.ingv.it/it/ Vulcani attivi] {{Webarchive|url=https://web.archive.org/web/20180322200110/http://vulcani.ingv.it/it |date=2018-03-22 }}, [[INGV]], accessed 29 August 2016.</ref>

In 1841, the first volcanological observatory, the [[Vesuvius Observatory]], was founded in the [[Kingdom of the Two Sicilies]].<ref>[http://vulcani.ingv.it/it/ Vulcani attivi] {{Webarchive|url=https://web.archive.org/web/20180322200110/http://vulcani.ingv.it/it |date=2018-03-22 }}, [[INGV]], accessed 29 August 2016.</ref> Volcanology advances have required more than just structured observation, and the science relies upon the understanding and integration of knowledge in many fields including [[geology]], [[tectonics]], [[physics]], [[chemistry]] and [[mathematics]], with many advances only being able to occur after the advance had occurred in another field of science. For example the study of [[Radioactive decay|radioactivity]] only commenced in 1896,<ref>{{cite journal|first1 =Henri|last1 =Becquerel|title =Sur les radiations invisibles émises par les corps phosphorescents|journal =Comptes Rendus|volume =122|pages =501–503|year =1896|url =https://gallica.bnf.fr/ark:/12148/bpt6k30780/f503.item}}</ref> and its application to the theory of [[plate tectonics]] and [[radiometric dating]] took about 50 years after this. Many other developments in [[fluid dynamics]], experimental physics and chemistry, techniques of [[mathematical model]]ling, [[instrumentation]] and in other sciences have been applied to volcanology since 1841.


=== Techniques ===

Seismic observations are made using [[seismograph]]s deployed near volcanic areas, watching out for increased seismicity during volcanic events, in particular looking for long period harmonic tremors, which signal [[magma]] movement through volcanic conduits.<ref name=Decker>Robert Decker and Barbara Decker, ''Volcanoes,'' 4th ed., W. H. Freeman, 2005, {{ISBN|0-7167-8929-9}}</ref>

Seismic observations are made using [[seismograph]]s deployed near volcanic areas, watching out for increased seismicity during volcanic events, in particular looking for long period harmonic tremors, which signal [[magma]] movement through volcanic conduits.<ref name=Decker>Robert Decker and Barbara Decker, ''Volcanoes,'' 4th ed., W. H. Freeman, 2005, {{ISBN|0-7167-8929-9}}</ref>



Line 25: Line 26:

Other [[Geophysics|geophysical techniques]] (electrical, gravity and magnetic observations) include monitoring fluctuations and sudden change in resistivity, gravity anomalies or magnetic anomaly patterns that may indicate volcano-induced faulting and magma upwelling.<ref name=Francis/>

Other [[Geophysics|geophysical techniques]] (electrical, gravity and magnetic observations) include monitoring fluctuations and sudden change in resistivity, gravity anomalies or magnetic anomaly patterns that may indicate volcano-induced faulting and magma upwelling.<ref name=Francis/>



[[Stratigraphy|Stratigraphic analyses]] includes analyzing [[tephra]] and lava deposits and dating these to give volcano eruption patterns,<ref>{{Cite journal|last1=Budd|first1=David A.|last2=Troll|first2=Valentin R.|last3=Dahren|first3=Börje|last4=Burchardt|first4=Steffi|date=2016|title=Persistent multitiered magma plumbing beneath Katla volcano, Iceland|url=https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015GC006118|journal=Geochemistry, Geophysics, Geosystems|language=en|volume=17|issue=3|pages=966–980|doi=10.1002/2015GC006118|bibcode=2016GGG....17..966B|issn=1525-2027|doi-access=free}}</ref> with estimated cycles of intense activity and size of eruptions.<ref name=Decker/>

[[Stratigraphy|Stratigraphic analyses]] includes analyzing [[tephra]] and lava deposits and dating these to give volcano eruption patterns,<ref>{{Cite journal|last1=Budd|first1=David A.|last2=Troll|first2=Valentin R.|last3=Dahren|first3=Börje|last4=Burchardt|first4=Steffi|date=2016|title=Persistent multitiered magma plumbing beneath Katla volcano, Iceland|journal=Geochemistry, Geophysics, Geosystems|language=en|volume=17|issue=3|pages=966–980|doi=10.1002/2015GC006118|bibcode=2016GGG....17..966B|issn=1525-2027|doi-access=free}}</ref> with estimated cycles of intense activity and size of eruptions.<ref name=Decker/>


Compositional analysis has been very successful in the grouping of volcanoes by type,<ref name=Davidson2007>{{cite journal|title =Microsampling and Isotopic Analysis of Igneous Rocks: Implications for the Study of Magmatic Systems|first1 =J.P.|last1 =Davidson|first2 =D.J.|last2 =Morgan|first3 =B.L.A.|last3 =Charlier|first4 =R.|last4 =Harlou|first5 =J.M.|last5 =Hora|journal =Annual Review of Earth and Planetary Sciences|year=2007|volume=35|issue =1|pages =273-311|doi =10.1146/annurev.earth.35.031306.140211}}</ref>{{rp|274}} origin of magma,<ref name=Davidson2007/>{{rp|274}} including matching of volcanoes to a [[mantle plume]] of a particular [[Hotspot (geology)|hotspot]], mantle plume melting depths,<ref>{{cite journal|last1 =Davies|first1 =D.|last2 =Rawlinson|first2 =N.|last3 =Iaffaldano|first3=G.|first4 =I.H.|last4 =Campbell|title =Lithospheric controls on magma composition along Earth’s longest continental hotspot track|journal =Nature| volume =525|pages =511–514|year =2015|doi =10.1038/nature14903}}</ref> the history of recycled subducted crust,<ref name=Davidson2007/>{{rp|pp=302-3}} matching of tephra deposits to each other and to volcanoes of origin,<ref>{{cite journal|last1 =Lowe|first1 =D. J.|last2 =Pearce|first2 =N. J. G.|last3 =Jorgensen|first3 =M. A.|last4 =Kuehn|first4 =S. C.|last5 =Tryon|first5 =C. A.|last6 =Hayward|first6 =C. L.|year = 2017|title =Correlating tephras and cryptotephras using glass compositional analyses and numerical and statistical methods: Review and evaluation|journal =Quaternary Science Reviews|volume =175|pages =1-44|doi =10.1016/j.quascirev.2017.08.003|hdl =10289/11352|hdl-access =free}}</ref> and the understanding the formation and evolution of magma reservoirs,<ref name=Davidson2007/>{{rp|pp=296-303}} an approach which has now been validated by real time sampling.<ref name=Halldórsson2022>{{cite journal|last1 =Halldórsson|first1 =S.A.|last2 =Marshall|first2 =E.W.|last3 =Caracciolo|first3 =A.|last4 =Matthews|first4 =S.|last5 =Bali|first5 =E.|last6 =Rasmussen|first6 =M.B.|last7 =Ranta|first7 =E.|last8 =Robin|first8 =J.G.|last9 =Guðfinnsson|first9 =G.H.|last10 =Sigmarsson|first10 =O.|last11 =Maclennan|first11 =J|title =Rapid shifting of a deep magmatic source at Fagradalsfjall volcano, Iceland|journal =Nature|volume =609|issue =7927|page =529–534|year= 2022|doi =10.1038/s41586-022-04981-x|doi-access =free|hdl =10447/576270|hdl-access =free}}{{rp|loc=Main}}</ref>


=== Forecasting ===

{{Main|Prediction of volcanic activity}}

Some of the techniques mentioned above, combined with modelling, have proved useful and successful in the forecasting of some eruptions,<ref name=Bebbington2019>{{cite journal|last1 =Bebbington|first1 =M.S.|last2 =Jenkins|first2=S.F.|title =Intra-eruption forecasting|journal =Bulletin of Volcanology|volume = 81|number =34|pages=1-17|year =2019|doi =10.1007/s00445-019-1294-9|hdl =10356/137220|hdl-access =free}}</ref>{{rp|pp=1-2}} such as the evacuation of the locality around [[Mount Pinatubo]] in 1991 that may have saved 20,000 lives.<ref>{{cite web|url=https://www.livescience.com/14603-pinatubo-eruption-20-anniversary.html|title =Pinatubo: Why the Biggest Volcanic Eruption Wasn't the Deadliest|archive-url =https://web.archive.org/web/20220719034051/https://www.livescience.com/14603-pinatubo-eruption-20-anniversary.html |archive-date=19 July 2022|access-date=17 January 2023|publisher=LiveScience|first1 =Stephanie|last1 =Pappas|date =15 June 2011}}</ref> Short-term forecasts tend to use seismic or multiple monitoring data with long term forecasting involving the study of the previous history of local volcanism.<ref name=Bebbington2019/>{{rp|1}} However, volcanology forecasting does not just involve predicting the next initial onset time of an eruption, as it might also address the size of a future eruption, and evolution of an eruption once it has begun.<ref name=Bebbington2019/>{{rp|pp=1-2}}



== History ==

== History ==

Volcanology has an extensive history. The earliest known recording of a volcanic eruption may be on a wall painting dated to about 7,000&nbsp;BCE found at the [[Neolithic]] site at Çatal Höyük in [[Anatolia]], [[Turkey]]. This painting has been interpreted as a depiction of an erupting volcano, with a cluster of houses below shows a twin peaked volcano in eruption, with a town at its base (though archaeologists now question this interpretation).<ref name=Meece>Meece, Stephanie, (2006)''A bird’s eye view - of a leopard’s spots. The Çatalhöyük ‘map’ and the development of cartographic representation in prehistory'' Anatolian Studies 56:1-16. See http://www.dspace.cam.ac.uk/handle/1810/195777</ref> The volcano may be either [[Mount Hasan|Hasan Dağ]], or its smaller neighbour, Melendiz Dağ.<ref name="Ülkekul">Ülkekul, Cevat, (2005)''Çatalhöyük Şehir Plani: Town Plan of Çatalhöyük'' Dönence, Istanbul.</ref>

Volcanology has an extensive history. The earliest known recording of a volcanic eruption may be on a wall painting dated to about 7,000&nbsp;BCE found at the [[Neolithic]] site at [[Çatal Höyük]] in [[Anatolia]], [[Turkey]].<ref name=Chester2007>{{cite book|last1 =Chester|first1= DK|last2= Duncan|first2= AM|chapter=Geomythology, theodicy, and the continuing relevance of religious worldviews on responses to volcanic eruptions|title= Living under the shadow: The cultural impacts of volcanic eruptions|year=2007|pages=203-24|chapter-url =https://assets.pubpub.org/dzhycvw5/41608048843389.pdf|editor-last1 =Grattan|editor-first1 = J|editor-last2 =Torrence|editor-first2 =R|publisher= Walnut Creek: Left Coast| isbn=9781315425177}}</ref>{{rp|p=203}} This painting has been interpreted as a depiction of an erupting volcano, with a cluster of houses below shows a twin peaked volcano in eruption, with a town at its base (though archaeologists now question this interpretation).<ref name=Meece>Meece, Stephanie, (2006)''A bird’s eye view - of a leopard’s spots. The Çatalhöyük ‘map’ and the development of cartographic representation in prehistory'' Anatolian Studies 56:1-16. See http://www.dspace.cam.ac.uk/handle/1810/195777</ref> The volcano may be either [[Mount Hasan|Hasan Dağ]], or its smaller neighbour, Melendiz Dağ.<ref name="Ülkekul">Ülkekul, Cevat, (2005)''Çatalhöyük Şehir Plani: Town Plan of Çatalhöyük'' Dönence, Istanbul.</ref>



=== Greco-Roman philosophy ===

=== Greco-Roman philosophy ===

{{unreferenced section|date=January 2015}}

{{More citations needed section|date=May 2024}}

[[File:Vesuvius1822scrope.jpg|thumb|Eruption of [[Mount Vesuvius|Vesuvius]] in 1822. The eruption of CE 79 would have appeared very similar.]]

[[File:Vesuvius1822scrope.jpg|thumb|Eruption of [[Mount Vesuvius|Vesuvius]] in 1822. The eruption of CE 79 would have appeared very similar.]]

The classical world of Greece and the early [[Roman Empire]] explained volcanoes as sites of various gods. Greeks considered that [[Hephaestus]], the god of fire, sat below the volcano [[Mount Etna|Etna]], forging the weapons of [[Zeus]]. The Greek word used to describe volcanoes was ''etna'', or ''hiera'', after [[Heracles]], the son of Zeus. The Roman poet [[Virgil]], in interpreting the Greek mythos, held that the giant [[Enceladus (giant)|Enceladus]] was buried beneath Etna by the goddess Athena as punishment for rebellion against the gods; the mountain's rumblings were his tormented cries, the flames his breath and the tremors his railing against the bars of his prison. Enceladus' brother [[Mimas (Giant)|Mimas]] was buried beneath [[Vesuvius]] by Hephaestus, and the blood of other defeated giants welled up in the Phlegrean Fields surrounding Vesuvius.

The classical world of Greece and the early [[Roman Empire]] explained volcanoes as sites of various gods. Greeks considered that [[Hephaestus]], the god of fire, sat below the volcano [[Mount Etna|Etna]], forging the weapons of [[Zeus]]. The Greek word used to describe volcanoes was ''etna'', or ''hiera'', after [[Heracles]], the son of Zeus. The Roman poet [[Virgil]], in interpreting the Greek mythos, held that the giant [[Enceladus (giant)|Enceladus]] was buried beneath Etna by the goddess Athena as punishment for rebellion against the gods; the mountain's rumblings were his tormented cries, the flames his breath and the tremors his railing against the bars of his prison. Enceladus' brother [[Mimas (Giant)|Mimas]] was buried beneath [[Vesuvius]] by Hephaestus, and the blood of other defeated giants welled up in the Phlegrean Fields surrounding Vesuvius.<ref name=Thomaidis2021>{{cite journal|last1=Thomaidis|first1 = K|last2 =Troll|first2 =VR|last3 =Deegan |first3 =FM|last4 =Freda|first4 =C|last5 =Corsaro|first5 =RA|last6 =Behncke|first6 =B|last7 =Rafailidis|first7 =S|title=A message from the ‘underground forge of the gods’: History and current eruptions at Mt Etna|journal=Geology Today|year =2021|volume =37| issue=4|pages =141-9|doi=10.1111/gto.12362|url =https://www.earth-prints.org/bitstream/2122/15268/3/Geology_Today_Mt.Etna.pdf}}</ref>



The Greek philosopher [[Empedocles]] (c. 490-430&nbsp;BCE) saw the world divided into four elemental forces, of Earth, Air, Fire and Water. Volcanoes, Empedocles maintained, were the manifestation of Elemental Fire. Plato contended that channels of hot and cold waters flow in inexhaustible quantities through subterranean rivers. In the depths of the earth snakes a vast river of fire, the ''Pyriphlegethon'', which feeds all the world's volcanoes. Aristotle considered underground fire as the result of "the...friction of the wind when it plunges into narrow passages."

The Greek philosopher [[Empedocles]] (c. 490-430&nbsp;BCE) saw the world divided into four elemental forces, of Earth, Air, Fire and Water. Volcanoes, Empedocles maintained, were the manifestation of Elemental Fire. Plato contended that channels of hot and cold waters flow in inexhaustible quantities through subterranean rivers. In the depths of the earth snakes a vast river of fire, the ''Pyriphlegethon'', which feeds all the world's volcanoes. Aristotle considered underground fire as the result of "the...friction of the wind when it plunges into narrow passages."



Wind played a key role in volcano explanations until the 16th century. [[Lucretius]], a Roman philosopher, claimed Etna was completely hollow and the fires of the underground driven by a fierce wind circulating near sea level. Ovid believed that the flame was fed from "fatty foods" and eruptions stopped when the food ran out. [[Vitruvius]] contended that sulfur, alum and bitumen fed the deep fires. Observations by [[Pliny the Elder]] noted the presence of earthquakes preceded an eruption; he died in the eruption of [[Vesuvius]] in 79&nbsp;CE while investigating it at [[Stabiae]]. His nephew, [[Pliny the Younger]], gave detailed descriptions of the eruption in which his uncle died, attributing his death to the effects of toxic gases. Such eruptions have been named [[Plinian]] in honour of the two authors.

Wind played a key role in volcano explanations until the 16th century after [[Anaxagoras]], in the fifth century BC, had proposed eruptions were caused by a great wind.<ref name=Sigurdsson2000>{{cite book|last1 =Sigurdsson|first1= H|last2 =Houghton|first2 =B|last3 =Rymer|first3 =H|last4 =Stix|first4 =J|last5 = McNutt|first5 =S|chapter =The history of volcanology| title=Encyclopedia of volcanoes|year =2000| pages=15-37|publisher = Academic Press|isbn=9780123859396}}</ref> [[Lucretius]], a Roman philosopher, claimed Etna was completely hollow and the fires of the underground driven by a fierce wind circulating near sea level. Ovid believed that the flame was fed from "fatty foods" and eruptions stopped when the food ran out. [[Vitruvius]] contended that sulfur, alum and bitumen fed the deep fires. Observations by [[Pliny the Elder]] noted the presence of earthquakes preceded an eruption; he died in the eruption of [[Vesuvius]] in 79&nbsp;CE while investigating it at [[Stabiae]]. His nephew, [[Pliny the Younger]], gave detailed descriptions of the eruption in which his uncle died, attributing his death to the effects of toxic gases. Such eruptions have been named [[Plinian]] in honour of the two authors.


=== Middle Ages ===

Thirteenth century [[Dominican Order|Dominican]] scholar [[Restoro d'Arezzo]] devoted two entire chapters (11.6.4.6 and 11.6.4.7) of his seminal treatise ''La composizione del mondo colle sue cascioni'' to the origin of the endogenous energy of the Earth. Restoro maintained that the interior of the Earth was very hot and insisted, following [[Empedocles]], that the Earth had a molten center and that volcanoes erupted through the rise of molten rock to the surface.<ref>{{cite book|title=Pyrite. A Natural History of Fool's Gold|first=David|last=Rickard|year=2015|publisher=[[Oxford University Press]]|isbn=9780190203689|page=128}}</ref>



=== Renaissance observations ===

=== Renaissance observations ===


[[File:MSH80 st helens eruption plume 07-22-80.jpg|thumb|After the [[1980 eruption of Mount St. Helens|first eruption of Mount St. Helens]] on May 18, five more explosive eruptions occurred in 1980, including this event on July 22. This eruption sent pumice and ash 6 to 11 miles (10-18 kilometers) into the air, and was visible in [[Seattle]], Washington, 100 miles (160 kilometers) to the north. The view here is from the south.]]

[[File:MSH80 st helens eruption plume 07-22-80.jpg|thumb|After the [[1980 eruption of Mount St. Helens|first eruption of Mount St. Helens]] on May 18, five more explosive eruptions occurred in 1980, including this event on July 22. This eruption sent pumice and ash 6 to 11 miles (10-18 kilometers) into the air, and was visible in [[Seattle]], Washington, 100 miles (160 kilometers) to the north. The view here is from the south.]]

{{More citations needed section|date=May 2024}}

During the Renaissance, observers as [[Bernard Palissy]], [[Conrad Gessner]], and Johannes Kentmann (1518-1568) showed a deep intense interest in the nature, behavior, origin and history of the terrestrial globe. Many theories of volcanic action were framed during the late sixteenth mid-seventeenth centuries. [[Georgius Agricola]] argued the rays of the sun, as later proposed by [[Descartes]] had nothing to do with volcanoes. Agricola believed vapor under pressure caused eruptions of 'mointain oil' and basalt. [[Johannes Kepler]] considered volcanoes as conduits for the tears and excrement of the Earth, voiding bitumen, tar and sulfur.<ref>{{cite journal |last=Williams |first=Micheal |date=November 2007 |title=Hearts of fire |journal=Morning Calm |issue=11–2007 |page=6}}</ref>{{Better source needed|reason=cited source reference — an article in "Morning Calm", a Korean airline's in-flight magazine for passengers — is probably not a reliable source of science history|date=March 2024}} Descartes, pronouncing that God had created the Earth in an instant, declared he had done so in three layers; the fiery depths,<ref name="Sigurdsson200022">{{cite book |last1=Sigurdsson |first1=H |title=Encyclopedia of volcanoes |last2=Houghton |first2=B |last3=Rymer |first3=H |last4=Stix |first4=J |last5=McNutt |first5=S |publisher=Academic Press |year=2000 |isbn=9780123859396 |pages=15-37 |chapter=The history of volcanology}}</ref> a layer of water, and the air. Volcanoes, he said, were formed where the rays of the sun pierced the earth.



The volcanoes of southern Italy attracted naturalists ever since the Renaissance led to the rediscovery of Classical descriptions of them by wtiters like [[Lucretius]] and [[Strabo]]. Vesuvius, [[Stromboli]] and [[Vulcano]] provided an opportunity to study the nature of volcanic phenomena. Italian natural philosophers living within reach of these volcanoes wrote long and learned books on the subject: [[Giovanni Alfonso Borelli]]'s account of the eruption of Mount Etna in 1669 became a standard source of information, as did Giulio Cesare Recupito's account of the [[1631 eruption of Mount Vesuvius]] (1632 and later editions) and [[Francesco Serao]]'s account of the eruption of Vesuvius in 1737 (1737, with editions in French and English).<ref>{{cite book|first=John|last=Thackray|chapter='The Modern Pliny': Hamilton and Vesuvius|title=Vases and Volcanoes: Sir William Hamilton and His Collection|editor1=Ian Jenkins|editor2=Kim Sloan|location=London|publisher=British Museum Press|year=1996|page=65}}</ref>

{{unreferenced section|date=January 2015}}

''[[Pyroclastic flow|Nuées ardentes]]'' were described from the Azores in 1580. [[Georgius Agricola]] argued the rays of the sun, as later proposed by [[Descartes]] had nothing to do with volcanoes. Agricola believed vapor under pressure caused eruptions of 'mointain oil' and basalt.



Jesuit [[Athanasius Kircher]] (1602–1680) witnessed eruptions of Mount Etna and Stromboli, then visited the crater of Vesuvius and published his view of an Earth with a central fire connected to numerous others caused by the burning of sulfur, bitumen and coal.

The Jesuit [[Athanasius Kircher]] (1602–1680) witnessed eruptions of Mount Etna and Stromboli, then visited the crater of Vesuvius and published his view of an Earth with a central fire connected to numerous others caused by the burning of sulfur, bitumen and coal. He published his view of this in ''[[Mundus Subterraneus]]'' with volcanoes acting as a type of safety valve.<ref>{{cite journal|last1 =Major|first1 =RH|title =Athanasius Kircher|journal = Annals of Medical History| year=1939|volume=1| issue=2|page=105-20|url= https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7939598/pdf/annmedhist148624-0007.pdf|access-date=11 November 2023}}</ref>


[[Johannes Kepler]] considered volcanoes as conduits for the tears and excrement of the Earth, voiding bitumen, tar and sulfur. Descartes, pronouncing that God had created the Earth in an instant, declared he had done so in three layers; the fiery depths, a layer of water, and the air. Volcanoes, he said, were formed where the rays of the sun pierced the earth.



The causes of these phenomena were discussed in the large number of theories of the Earth that were published in the hundred years after 1650. The authors of these theories were not themselves observers, but combined the observations of others with Newtonian, Cartesian, Biblical or animistic science to produce a variety of all-embracing systems. Volcanic eruptions and earthquakes were generally linked in these systems to the existence of great open caverns under the Earth where inflammable vapours could accumulate until they were ignited. According to [[Thomas Burnet]], much of the Earth itself was inflammable, with pitch, coal and brimstone all ready to burn. In [[William Whiston]]'s theory the presence of underground air was necessary if ignition were to take place, while [[John Woodward (naturalist)|John Woodward]] stressed that water was essential. Athanasius Kircher maintained that the caverns and sources of the heat were deep, and reached down towards the centre of the Earth, while other writers, notably [[Georges-Louis Leclerc, Comte de Buffon|Georges Buffon]], believed they were relatively superficial, and that volcanic fires were seated well up within the volcanic cone itself. A number of writers, most notably Thomas Robinson, believed that the Earth was an animal, and that its internal heat, earthquakes and eruptions were all signs of life. This animistic philosophy was waning by the end of the seventeenth century, but traces continued well into the eighteenth.

Science wrestled with the ideas of the combustion of [[pyrite]] with water, that rock was solidified bitumen, and with notions of rock being formed from water ([[Neptunism]]). Of the volcanoes then known, all were near the water, hence the action of the sea upon the land was used to explain [[volcanism]].

Science wrestled with the ideas of the combustion of [[pyrite]] with water, that rock was solidified bitumen, and with notions of rock being formed from water ([[Neptunism]]). Of the volcanoes then known, all were near the water, hence the action of the sea upon the land was used to explain [[volcanism]].



Line 55: Line 64:

[[File:peleshair on antenna.jpg|thumb|Pele's hair caught on a radio antenna mounted on the south rim of [[Puʻu ʻŌʻō|Pu{{okina}}u {{okina}}Ō{{okina}}ō]], [[Hawaii|Hawai{{okina}}i]], July 22, 2005]]

[[File:peleshair on antenna.jpg|thumb|Pele's hair caught on a radio antenna mounted on the south rim of [[Puʻu ʻŌʻō|Pu{{okina}}u {{okina}}Ō{{okina}}ō]], [[Hawaii|Hawai{{okina}}i]], July 22, 2005]]



Tribal legends of [[volcano]]es abound from the [[Pacific Ring of Fire]] and the Americas, usually invoking the forces of the supernatural or the divine to explain the violent outbursts of volcanoes.<ref>{{Cite journal|last1=Troll|first1=Valentin R.|last2=Deegan|first2=Frances M.|last3=Jolis|first3=Ester M.|last4=Budd|first4=David A.|last5=Dahren|first5=Börje|last6=Schwarzkopf|first6=Lothar M.|date=2015-03-01|title=Ancient oral tradition describes volcano–earthquake interaction at merapi volcano, indonesia|url=https://doi.org/10.1111/geoa.12099|journal=Geografiska Annaler: Series A, Physical Geography|volume=97|issue=1|pages=137–166|doi=10.1111/geoa.12099|s2cid=129186824|issn=0435-3676}}</ref> [[Mount Taranaki/Egmont|Taranaki]] and [[Tongariro]], according to Māori mythology, were lovers who fell in love with [[Pihanga]], and a spiteful jealous fight ensued. Māori will not to this day live between Tongariro and Taranaki for fear of the dispute flaring up again.{{citation needed|date=July 2016}}

Tribal legends of [[volcano]]es abound from the [[Pacific Ring of Fire]] and the Americas, usually invoking the forces of the supernatural or the divine to explain the violent outbursts of volcanoes.<ref>{{Cite journal|last1=Troll|first1=Valentin R.|last2=Deegan|first2=Frances M.|last3=Jolis|first3=Ester M.|last4=Budd|first4=David A.|last5=Dahren|first5=Börje|last6=Schwarzkopf|first6=Lothar M.|date=2015-03-01|title=Ancient oral tradition describes volcano–earthquake interaction at merapi volcano, indonesia|url=https://doi.org/10.1111/geoa.12099|journal=Geografiska Annaler: Series A, Physical Geography|volume=97|issue=1|pages=137–166|doi=10.1111/geoa.12099|s2cid=129186824|issn=0435-3676}}</ref> [[Mount Taranaki/Egmont|Taranaki]] and [[Tongariro]], according to Māori mythology, were lovers who fell in love with [[Pihanga]], and a spiteful jealous fight ensued. Some Māori will not to this day live on the direct line between Tongariro and Taranaki for fear of the dispute flaring up again.<ref>{{cite web|title=Living Memory and the Travelling Mountain Narrative of Taranaki|last1 =Ngāwhare-Pounamu|first1 =D|url =https://core.ac.uk/download/pdf/41338806.pdf|access-date =12 November 2023}}</ref>


In the [[Hawaiian religion]], [[Pele (deity)|Pele]] ({{IPAc-en|ˈ|p|eɪ|l|eɪ}} Pel-a; {{IPA-haw|ˈpɛlɛ|}}) is the goddess of volcanoes and a popular figure in [[Hawaiian mythology]].<ref name="Nimmo">{{cite book | author= H. Arlo Nimmo |date= 2011 |title= Pele, Volcano Goddess of Hawai'i: A History |publisher=McFarland |isbn=978-0-7864-6347-3 |page= 208 |url=https://books.google.com/books?id=n2ii6J0C0hYC}}</ref> Pele was used for various scientific terms as for [[Pele's hair]], [[Pele's tears]], and [[Limu o Pele]] (Pele's seaweed). A volcano on the [[Jupiter|Jovian]] moon [[Io (Moon)|Io]] is also named [[Pele (volcano)|Pele]].<ref name=Radebaugh2004>{{cite journal | last=Radebaugh |first=J. |display-authors=etal |title=Observations and temperatures of Io's Pele Patera from Cassini and Galileo spacecraft images |journal=Icarus |volume=169 |pages=65–79 |date=2004 |issue=1 |doi =10.1016/j.icarus.2003.10.019 |bibcode=2004Icar..169...65R}}</ref>

In the [[Hawaiian religion]], [[Pele (deity)|Pele]] ({{IPAc-en|ˈ|p|eɪ|l|eɪ}} Pel-a; {{IPA-haw|ˈpɛlɛ|}}) is the goddess of volcanoes and a popular figure in [[Hawaiian mythology]].<ref name="Nimmo">{{cite book | author= H. Arlo Nimmo |date= 2011 |title= Pele, Volcano Goddess of Hawai'i: A History |publisher=McFarland |isbn=978-0-7864-6347-3 |page= 208 |url=https://books.google.com/books?id=n2ii6J0C0hYC}}</ref> Pele was used for various scientific terms as for [[Pele's hair]], [[Pele's tears]], and [[Limu o Pele]] (Pele's seaweed). A volcano on the [[Jupiter|Jovian]] moon [[Io (Moon)|Io]] is also named [[Pele (volcano)|Pele]].<ref name=Radebaugh2004>{{cite journal | last=Radebaugh |first=J. |display-authors=etal |title=Observations and temperatures of Io's Pele Patera from Cassini and Galileo spacecraft images |journal=Icarus |volume=169 |pages=65–79 |date=2004 |issue=1 |doi =10.1016/j.icarus.2003.10.019 |bibcode=2004Icar..169...65R}}</ref>



[[Saint Agatha]] is patron saint of [[Catania]], close to mount Etna, and an important highly venerated (till today<ref name=foley>[http://www.americancatholic.org/Features/Saints/saint.aspx?id=1282 Foley O.F.M., Leonard. ''Saint of the Day'', (revised by Pat McCloskey O.F.M.), Franciscan Media] {{ISBN|978-0-86716-887-7}}</ref>) example of virgin martyrs of Christian antiquity.<ref name=kirsch>[http://www.newadvent.org/cathen/01203c.htm Kirsch, Johann Peter. "St. Agatha." ''The Catholic Encyclopedia''. Vol. 1. New York: Robert Appleton Company, 1907. 25 April 2013]</ref> In 253 CE, one year after her violent death, the stilling of an eruption of Mt. Etna was attributed to her intercession. Catania was however nearly completely destroyed by the eruption of Mt. Etna in 1169, and over 15,000 of its inhabitants died. Nevertheless, she was invoked again for the [[1669 Etna eruption]] and, for an outbreak danginering [[Nicolosi]] in 1886.<ref>Volcanoes: Crucibles of Change Richard V. Fisher, Grant Heiken, Jeffrey B. Hulen Princeton University Press, 1998</ref> The way she is invoked and dealt with in Italian [[Folk religion]], a sort of quid pro quo way approach to saints, has been related (in the tradition of [[James Frazer]]) to earlier pagan believes.<ref>''Festa: Recipes and Recollections of Italian Holidays'' Helen Barolini Univ of Wisconsin Press, 2002</ref>

[[Saint Agatha]] is patron saint of [[Catania]], close to mount Etna, and an important highly venerated (till today<ref name=foley>[http://www.americancatholic.org/Features/Saints/saint.aspx?id=1282 Foley O.F.M., Leonard. ''Saint of the Day'', (revised by Pat McCloskey O.F.M.), Franciscan Media] {{ISBN|978-0-86716-887-7}}</ref>) example of virgin martyrs of Christian antiquity.<ref name=kirsch>[http://www.newadvent.org/cathen/01203c.htm Kirsch, Johann Peter. "St. Agatha." ''The Catholic Encyclopedia''. Vol. 1. New York: Robert Appleton Company, 1907. 25 April 2013]</ref> In 253 CE, one year after her violent death, the stilling of an eruption of Mt. Etna was attributed to her intercession. Catania was however nearly completely destroyed by the eruption of Mt. Etna in 1169, and over 15,000 of its inhabitants died. Nevertheless, the saint was invoked again for the [[1669 Etna eruption]] and, for an outbreak that was endangering the town of [[Nicolosi]] in 1886.<ref>Volcanoes: Crucibles of Change Richard V. Fisher, Grant Heiken, Jeffrey B. Hulen Princeton University Press, 1998</ref> The way the saint is invoked and dealt with in Italian [[folk religion]],in a quid pro quo manner, or bargaining approach which is sometimes used in prayerful interactions with saints, has been related (in the tradition of [[James Frazer]]) to earlier pagan beliefs and practices.<ref>''Festa: Recipes and Recollections of Italian Holidays'' Helen Barolini Univ of Wisconsin Press, 2002</ref>



In 1660 the eruption of Vesuvius rained [[Crystal twinning|twinned]] [[pyroxene]] crystals and ash upon the nearby villages. The crystals resembled the crucifix and this was interpreted as the work of [[Saint Januarius]]. In [[Naples]], the relics of St Januarius are paraded through town at every major eruption of Vesuvius. The register of these processions and the 1779 and 1794 diary of Father Antonio Piaggio allowed British diplomat and amateur naturalist [[William Hamilton (diplomat)|Sir William Hamilton]] to provide a detailed chronology and description of Vesuvius' eruptions.<ref>[http://www.historytoday.com/james-hamilton/lure-volcanoes The Lure of Volcanoes] [http://www.historytoday.com/author/james-hamilton James Hamilton] [http://www.historytoday.com/archive/history-today/latest History Today] [http://www.historytoday.com/archive/history-today/volume-60-issue-7-july-2010 Volume 60 Issue 7 July 2010 ]</ref>

In 1660 the eruption of Vesuvius rained [[Crystal twinning|twinned]] [[pyroxene]] crystals and ash upon the nearby villages. The crystals resembled the crucifix and this was interpreted as the work of [[Saint Januarius]]. In [[Naples]], the relics of St Januarius are paraded through town at every major eruption of Vesuvius. The register of these processions and the 1779 and 1794 diary of Father [[Antonio Piaggio]] allowed British diplomat and amateur naturalist [[William Hamilton (diplomat)|Sir William Hamilton]] to provide a detailed chronology and description of Vesuvius' eruptions.<ref>[http://www.historytoday.com/james-hamilton/lure-volcanoes The Lure of Volcanoes] [http://www.historytoday.com/author/james-hamilton James Hamilton] [http://www.historytoday.com/archive/history-today/latest History Today] [http://www.historytoday.com/archive/history-today/volume-60-issue-7-july-2010 Volume 60 Issue 7 July 2010 ]</ref>



==Notable volcanologists==

==Notable volcanologists==

Line 110: Line 118:

* [http://www.sveurop.org European Volcanological Society]

* [http://www.sveurop.org European Volcanological Society]

* [http://volcanoes.usgs.gov United States Geological Survey- Volcanic Hazards Program]

* [http://volcanoes.usgs.gov United States Geological Survey- Volcanic Hazards Program]

* [https://web.archive.org/web/20120915044457/http://www.volcanolive.com/volcanologist.html Volcano Live- What is a volcanologist?]

* [https://web.archive.org/web/20120915044457/http://www.volcanolive.com/volcanologist.html Volcano Live What is a volcanologist?]

* {{In Our Time|Vulcanology|p005490h}}

* {{In Our Time|Vulcanology|p005490h}}

* [http://www.wovo.org World Organization of Volcano Observatories]

* [http://www.wovo.org World Organization of Volcano Observatories]


Revision as of 19:36, 28 May 2024

Avolcanologist sampling lava using a rock hammer and a bucket of water
Eruption of Stromboli (Isole Eolie/Italia), ca. 100m (300ft) vertically. Exposure of several seconds. The dashed trajectories are the result of lava pieces with a bright hot side and a cool dark side rotating in mid-air.

Volcanology (also spelled vulcanology) is the study of volcanoes, lava, magma and related geological, geophysical and geochemical phenomena (volcanism). The term volcanology is derived from the Latin word vulcan. Vulcan was the ancient Roman god of fire.

Avolcanologist is a geologist who studies the eruptive activity and formation of volcanoes and their current and historic eruptions. Volcanologists frequently visit volcanoes, especially active ones, to observe volcanic eruptions, collect eruptive products including tephra (such as ashorpumice), rock and lava samples. One major focus of enquiry is the prediction of eruptions; there is currently no accurate way to do this, but predicting or forecasting eruptions, like predicting earthquakes, could save many lives.

Modern volcanology

Volcanologist examining tephra horizons in south-central Iceland.
A diagram of a destructive plate margin, where subduction fuels volcanic activity at the subduction zones of tectonic plate boundaries.

In 1841, the first volcanological observatory, the Vesuvius Observatory, was founded in the Kingdom of the Two Sicilies.[1] Volcanology advances have required more than just structured observation, and the science relies upon the understanding and integration of knowledge in many fields including geology, tectonics, physics, chemistry and mathematics, with many advances only being able to occur after the advance had occurred in another field of science. For example the study of radioactivity only commenced in 1896,[2] and its application to the theory of plate tectonics and radiometric dating took about 50 years after this. Many other developments in fluid dynamics, experimental physics and chemistry, techniques of mathematical modelling, instrumentation and in other sciences have been applied to volcanology since 1841.

Techniques

Seismic observations are made using seismographs deployed near volcanic areas, watching out for increased seismicity during volcanic events, in particular looking for long period harmonic tremors, which signal magma movement through volcanic conduits.[3]

Surface deformation monitoring includes the use of geodetic techniques such as leveling, tilt, strain, angle and distance measurements through tiltmeters, total stations and EDMs. This also includes GNSS observations and InSAR.[4] Surface deformation indicates magma upwelling: increased magma supply produces bulges in the volcanic center's surface.

Gas emissions may be monitored with equipment including portable ultra-violet spectrometers (COSPEC, now superseded by the miniDOAS), which analyzes the presence of volcanic gases such as sulfur dioxide; or by infra-red spectroscopy (FTIR). Increased gas emissions, and more particularly changes in gas compositions, may signal an impending volcanic eruption.[3]

Temperature changes are monitored using thermometers and observing changes in thermal properties of volcanic lakes and vents, which may indicate upcoming activity.[5]

Satellites are widely used to monitor volcanoes, as they allow a large area to be monitored easily. They can measure the spread of an ash plume, such as the one from Eyjafjallajökull's 2010 eruption,[6] as well as SO2 emissions.[7] InSAR and thermal imaging can monitor large, scarcely populated areas where it would be too expensive to maintain instruments on the ground.

Other geophysical techniques (electrical, gravity and magnetic observations) include monitoring fluctuations and sudden change in resistivity, gravity anomalies or magnetic anomaly patterns that may indicate volcano-induced faulting and magma upwelling.[5]

Stratigraphic analyses includes analyzing tephra and lava deposits and dating these to give volcano eruption patterns,[8] with estimated cycles of intense activity and size of eruptions.[3]

Compositional analysis has been very successful in the grouping of volcanoes by type,[9]: 274  origin of magma,[9]: 274  including matching of volcanoes to a mantle plume of a particular hotspot, mantle plume melting depths,[10] the history of recycled subducted crust,[9]: 302–3  matching of tephra deposits to each other and to volcanoes of origin,[11] and the understanding the formation and evolution of magma reservoirs,[9]: 296–303  an approach which has now been validated by real time sampling.[12]

Forecasting

Some of the techniques mentioned above, combined with modelling, have proved useful and successful in the forecasting of some eruptions,[13]: 1–2  such as the evacuation of the locality around Mount Pinatubo in 1991 that may have saved 20,000 lives.[14] Short-term forecasts tend to use seismic or multiple monitoring data with long term forecasting involving the study of the previous history of local volcanism.[13]: 1  However, volcanology forecasting does not just involve predicting the next initial onset time of an eruption, as it might also address the size of a future eruption, and evolution of an eruption once it has begun.[13]: 1–2 

History

Volcanology has an extensive history. The earliest known recording of a volcanic eruption may be on a wall painting dated to about 7,000 BCE found at the Neolithic site at Çatal HöyükinAnatolia, Turkey.[15]: 203  This painting has been interpreted as a depiction of an erupting volcano, with a cluster of houses below shows a twin peaked volcano in eruption, with a town at its base (though archaeologists now question this interpretation).[16] The volcano may be either Hasan Dağ, or its smaller neighbour, Melendiz Dağ.[17]

Greco-Roman philosophy

Eruption of Vesuvius in 1822. The eruption of CE 79 would have appeared very similar.

The classical world of Greece and the early Roman Empire explained volcanoes as sites of various gods. Greeks considered that Hephaestus, the god of fire, sat below the volcano Etna, forging the weapons of Zeus. The Greek word used to describe volcanoes was etna, or hiera, after Heracles, the son of Zeus. The Roman poet Virgil, in interpreting the Greek mythos, held that the giant Enceladus was buried beneath Etna by the goddess Athena as punishment for rebellion against the gods; the mountain's rumblings were his tormented cries, the flames his breath and the tremors his railing against the bars of his prison. Enceladus' brother Mimas was buried beneath Vesuvius by Hephaestus, and the blood of other defeated giants welled up in the Phlegrean Fields surrounding Vesuvius.[18]

The Greek philosopher Empedocles (c. 490-430 BCE) saw the world divided into four elemental forces, of Earth, Air, Fire and Water. Volcanoes, Empedocles maintained, were the manifestation of Elemental Fire. Plato contended that channels of hot and cold waters flow in inexhaustible quantities through subterranean rivers. In the depths of the earth snakes a vast river of fire, the Pyriphlegethon, which feeds all the world's volcanoes. Aristotle considered underground fire as the result of "the...friction of the wind when it plunges into narrow passages."

Wind played a key role in volcano explanations until the 16th century after Anaxagoras, in the fifth century BC, had proposed eruptions were caused by a great wind.[19] Lucretius, a Roman philosopher, claimed Etna was completely hollow and the fires of the underground driven by a fierce wind circulating near sea level. Ovid believed that the flame was fed from "fatty foods" and eruptions stopped when the food ran out. Vitruvius contended that sulfur, alum and bitumen fed the deep fires. Observations by Pliny the Elder noted the presence of earthquakes preceded an eruption; he died in the eruption of Vesuvius in 79 CE while investigating it at Stabiae. His nephew, Pliny the Younger, gave detailed descriptions of the eruption in which his uncle died, attributing his death to the effects of toxic gases. Such eruptions have been named Plinian in honour of the two authors.

Middle Ages

Thirteenth century Dominican scholar Restoro d'Arezzo devoted two entire chapters (11.6.4.6 and 11.6.4.7) of his seminal treatise La composizione del mondo colle sue cascioni to the origin of the endogenous energy of the Earth. Restoro maintained that the interior of the Earth was very hot and insisted, following Empedocles, that the Earth had a molten center and that volcanoes erupted through the rise of molten rock to the surface.[20]

Renaissance observations

After the first eruption of Mount St. Helens on May 18, five more explosive eruptions occurred in 1980, including this event on July 22. This eruption sent pumice and ash 6 to 11 miles (10-18 kilometers) into the air, and was visible in Seattle, Washington, 100 miles (160 kilometers) to the north. The view here is from the south.

During the Renaissance, observers as Bernard Palissy, Conrad Gessner, and Johannes Kentmann (1518-1568) showed a deep intense interest in the nature, behavior, origin and history of the terrestrial globe. Many theories of volcanic action were framed during the late sixteenth mid-seventeenth centuries. Georgius Agricola argued the rays of the sun, as later proposed by Descartes had nothing to do with volcanoes. Agricola believed vapor under pressure caused eruptions of 'mointain oil' and basalt. Johannes Kepler considered volcanoes as conduits for the tears and excrement of the Earth, voiding bitumen, tar and sulfur.[21][better source needed] Descartes, pronouncing that God had created the Earth in an instant, declared he had done so in three layers; the fiery depths,[22] a layer of water, and the air. Volcanoes, he said, were formed where the rays of the sun pierced the earth.

The volcanoes of southern Italy attracted naturalists ever since the Renaissance led to the rediscovery of Classical descriptions of them by wtiters like Lucretius and Strabo. Vesuvius, Stromboli and Vulcano provided an opportunity to study the nature of volcanic phenomena. Italian natural philosophers living within reach of these volcanoes wrote long and learned books on the subject: Giovanni Alfonso Borelli's account of the eruption of Mount Etna in 1669 became a standard source of information, as did Giulio Cesare Recupito's account of the 1631 eruption of Mount Vesuvius (1632 and later editions) and Francesco Serao's account of the eruption of Vesuvius in 1737 (1737, with editions in French and English).[23]

The Jesuit Athanasius Kircher (1602–1680) witnessed eruptions of Mount Etna and Stromboli, then visited the crater of Vesuvius and published his view of an Earth with a central fire connected to numerous others caused by the burning of sulfur, bitumen and coal. He published his view of this in Mundus Subterraneus with volcanoes acting as a type of safety valve.[24]

The causes of these phenomena were discussed in the large number of theories of the Earth that were published in the hundred years after 1650. The authors of these theories were not themselves observers, but combined the observations of others with Newtonian, Cartesian, Biblical or animistic science to produce a variety of all-embracing systems. Volcanic eruptions and earthquakes were generally linked in these systems to the existence of great open caverns under the Earth where inflammable vapours could accumulate until they were ignited. According to Thomas Burnet, much of the Earth itself was inflammable, with pitch, coal and brimstone all ready to burn. In William Whiston's theory the presence of underground air was necessary if ignition were to take place, while John Woodward stressed that water was essential. Athanasius Kircher maintained that the caverns and sources of the heat were deep, and reached down towards the centre of the Earth, while other writers, notably Georges Buffon, believed they were relatively superficial, and that volcanic fires were seated well up within the volcanic cone itself. A number of writers, most notably Thomas Robinson, believed that the Earth was an animal, and that its internal heat, earthquakes and eruptions were all signs of life. This animistic philosophy was waning by the end of the seventeenth century, but traces continued well into the eighteenth. Science wrestled with the ideas of the combustion of pyrite with water, that rock was solidified bitumen, and with notions of rock being formed from water (Neptunism). Of the volcanoes then known, all were near the water, hence the action of the sea upon the land was used to explain volcanism.

Interaction with religion and mythology

Pele's hair caught on a radio antenna mounted on the south rim of Puʻu ʻŌʻō, Hawaiʻi, July 22, 2005

Tribal legends of volcanoes abound from the Pacific Ring of Fire and the Americas, usually invoking the forces of the supernatural or the divine to explain the violent outbursts of volcanoes.[25] Taranaki and Tongariro, according to Māori mythology, were lovers who fell in love with Pihanga, and a spiteful jealous fight ensued. Some Māori will not to this day live on the direct line between Tongariro and Taranaki for fear of the dispute flaring up again.[26] In the Hawaiian religion, Pele (/ˈpl/ Pel-a; [ˈpɛlɛ]) is the goddess of volcanoes and a popular figure in Hawaiian mythology.[27] Pele was used for various scientific terms as for Pele's hair, Pele's tears, and Limu o Pele (Pele's seaweed). A volcano on the Jovian moon Io is also named Pele.[28]

Saint Agatha is patron saint of Catania, close to mount Etna, and an important highly venerated (till today[29]) example of virgin martyrs of Christian antiquity.[30] In 253 CE, one year after her violent death, the stilling of an eruption of Mt. Etna was attributed to her intercession. Catania was however nearly completely destroyed by the eruption of Mt. Etna in 1169, and over 15,000 of its inhabitants died. Nevertheless, the saint was invoked again for the 1669 Etna eruption and, for an outbreak that was endangering the town of Nicolosi in 1886.[31] The way the saint is invoked and dealt with in Italian folk religion, in a quid pro quo manner, or bargaining approach which is sometimes used in prayerful interactions with saints, has been related (in the tradition of James Frazer) to earlier pagan beliefs and practices.[32]

In 1660 the eruption of Vesuvius rained twinned pyroxene crystals and ash upon the nearby villages. The crystals resembled the crucifix and this was interpreted as the work of Saint Januarius. In Naples, the relics of St Januarius are paraded through town at every major eruption of Vesuvius. The register of these processions and the 1779 and 1794 diary of Father Antonio Piaggio allowed British diplomat and amateur naturalist Sir William Hamilton to provide a detailed chronology and description of Vesuvius' eruptions.[33]

Notable volcanologists

Spanish depiction of a volcanic eruption in Guatemala, 1775.

Gallery

See also

References

  1. ^ Vulcani attivi Archived 2018-03-22 at the Wayback Machine, INGV, accessed 29 August 2016.
  • ^ Becquerel, Henri (1896). "Sur les radiations invisibles émises par les corps phosphorescents". Comptes Rendus. 122: 501–503.
  • ^ a b c Robert Decker and Barbara Decker, Volcanoes, 4th ed., W. H. Freeman, 2005, ISBN 0-7167-8929-9
  • ^ Bartel, B., 2002. Magma dynamics at Taal Volcano, Philippines from continuous GPS measurements. Master's Thesis, Department of Geological Sciences, Indiana University, Bloomington, Indiana
  • ^ a b Peter Francis and Clive Oppenheimer, Volcanoes, Oxford University Press, USA 2003, 2nd ed., ISBN 0-19-925469-9
  • ^ "Archive: NASA Observes Ash Plume of Icelandic Volcano". NASA.
  • ^ "NASA ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer), Volcanology". Archived from the original on 2010-05-28. Retrieved 2010-09-03.
  • ^ Budd, David A.; Troll, Valentin R.; Dahren, Börje; Burchardt, Steffi (2016). "Persistent multitiered magma plumbing beneath Katla volcano, Iceland". Geochemistry, Geophysics, Geosystems. 17 (3): 966–980. Bibcode:2016GGG....17..966B. doi:10.1002/2015GC006118. ISSN 1525-2027.
  • ^ a b c d Davidson, J.P.; Morgan, D.J.; Charlier, B.L.A.; Harlou, R.; Hora, J.M. (2007). "Microsampling and Isotopic Analysis of Igneous Rocks: Implications for the Study of Magmatic Systems". Annual Review of Earth and Planetary Sciences. 35 (1): 273–311. doi:10.1146/annurev.earth.35.031306.140211.
  • ^ Davies, D.; Rawlinson, N.; Iaffaldano, G.; Campbell, I.H. (2015). "Lithospheric controls on magma composition along Earth's longest continental hotspot track". Nature. 525: 511–514. doi:10.1038/nature14903.
  • ^ Lowe, D. J.; Pearce, N. J. G.; Jorgensen, M. A.; Kuehn, S. C.; Tryon, C. A.; Hayward, C. L. (2017). "Correlating tephras and cryptotephras using glass compositional analyses and numerical and statistical methods: Review and evaluation". Quaternary Science Reviews. 175: 1–44. doi:10.1016/j.quascirev.2017.08.003. hdl:10289/11352.
  • ^ Halldórsson, S.A.; Marshall, E.W.; Caracciolo, A.; Matthews, S.; Bali, E.; Rasmussen, M.B.; Ranta, E.; Robin, J.G.; Guðfinnsson, G.H.; Sigmarsson, O.; Maclennan, J (2022). "Rapid shifting of a deep magmatic source at Fagradalsfjall volcano, Iceland". Nature. 609 (7927): 529–534. doi:10.1038/s41586-022-04981-x. hdl:10447/576270.: Main 
  • ^ a b c Bebbington, M.S.; Jenkins, S.F. (2019). "Intra-eruption forecasting". Bulletin of Volcanology. 81 (34): 1–17. doi:10.1007/s00445-019-1294-9. hdl:10356/137220.
  • ^ Pappas, Stephanie (15 June 2011). "Pinatubo: Why the Biggest Volcanic Eruption Wasn't the Deadliest". LiveScience. Archived from the original on 19 July 2022. Retrieved 17 January 2023.
  • ^ Chester, DK; Duncan, AM (2007). "Geomythology, theodicy, and the continuing relevance of religious worldviews on responses to volcanic eruptions" (PDF). In Grattan, J; Torrence, R (eds.). Living under the shadow: The cultural impacts of volcanic eruptions. Walnut Creek: Left Coast. pp. 203–24. ISBN 9781315425177.
  • ^ Meece, Stephanie, (2006)A bird’s eye view - of a leopard’s spots. The Çatalhöyük ‘map’ and the development of cartographic representation in prehistory Anatolian Studies 56:1-16. See http://www.dspace.cam.ac.uk/handle/1810/195777
  • ^ Ülkekul, Cevat, (2005)Çatalhöyük Şehir Plani: Town Plan of Çatalhöyük Dönence, Istanbul.
  • ^ Thomaidis, K; Troll, VR; Deegan, FM; Freda, C; Corsaro, RA; Behncke, B; Rafailidis, S (2021). "A message from the 'underground forge of the gods': History and current eruptions at Mt Etna" (PDF). Geology Today. 37 (4): 141–9. doi:10.1111/gto.12362.
  • ^ Sigurdsson, H; Houghton, B; Rymer, H; Stix, J; McNutt, S (2000). "The history of volcanology". Encyclopedia of volcanoes. Academic Press. pp. 15–37. ISBN 9780123859396.
  • ^ Rickard, David (2015). Pyrite. A Natural History of Fool's Gold. Oxford University Press. p. 128. ISBN 9780190203689.
  • ^ Williams, Micheal (November 2007). "Hearts of fire". Morning Calm (11–2007): 6.
  • ^ Sigurdsson, H; Houghton, B; Rymer, H; Stix, J; McNutt, S (2000). "The history of volcanology". Encyclopedia of volcanoes. Academic Press. pp. 15–37. ISBN 9780123859396.
  • ^ Thackray, John (1996). "'The Modern Pliny': Hamilton and Vesuvius". In Ian Jenkins; Kim Sloan (eds.). Vases and Volcanoes: Sir William Hamilton and His Collection. London: British Museum Press. p. 65.
  • ^ Major, RH (1939). "Athanasius Kircher" (PDF). Annals of Medical History. 1 (2): 105-20. Retrieved 11 November 2023.
  • ^ Troll, Valentin R.; Deegan, Frances M.; Jolis, Ester M.; Budd, David A.; Dahren, Börje; Schwarzkopf, Lothar M. (2015-03-01). "Ancient oral tradition describes volcano–earthquake interaction at merapi volcano, indonesia". Geografiska Annaler: Series A, Physical Geography. 97 (1): 137–166. doi:10.1111/geoa.12099. ISSN 0435-3676. S2CID 129186824.
  • ^ Ngāwhare-Pounamu, D. "Living Memory and the Travelling Mountain Narrative of Taranaki" (PDF). Retrieved 12 November 2023.
  • ^ H. Arlo Nimmo (2011). Pele, Volcano Goddess of Hawai'i: A History. McFarland. p. 208. ISBN 978-0-7864-6347-3.
  • ^ Radebaugh, J.; et al. (2004). "Observations and temperatures of Io's Pele Patera from Cassini and Galileo spacecraft images". Icarus. 169 (1): 65–79. Bibcode:2004Icar..169...65R. doi:10.1016/j.icarus.2003.10.019.
  • ^ Foley O.F.M., Leonard. Saint of the Day, (revised by Pat McCloskey O.F.M.), Franciscan Media ISBN 978-0-86716-887-7
  • ^ Kirsch, Johann Peter. "St. Agatha." The Catholic Encyclopedia. Vol. 1. New York: Robert Appleton Company, 1907. 25 April 2013
  • ^ Volcanoes: Crucibles of Change Richard V. Fisher, Grant Heiken, Jeffrey B. Hulen Princeton University Press, 1998
  • ^ Festa: Recipes and Recollections of Italian Holidays Helen Barolini Univ of Wisconsin Press, 2002
  • ^ The Lure of Volcanoes James Hamilton History Today Volume 60 Issue 7 July 2010
  • External links


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Volcanology&oldid=1226137446"

    Categories: 
    Volcanology
    Earth sciences
    Hidden categories: 
    Webarchive template wayback links
    Articles with short description
    Short description is different from Wikidata
    Articles needing additional references from May 2024
    All articles needing additional references
    All articles lacking reliable references
    Articles lacking reliable references from March 2024
    Pages with Hawaiian IPA
    Articles with GND identifiers
    Articles with J9U identifiers
    Articles with LCCN identifiers
    Articles with NKC identifiers
     



    This page was last edited on 28 May 2024, at 19:36 (UTC).

    This version of the page has been revised. Besides normal editing, the reason for revision may have been that this version contains factual inaccuracies, vandalism, or material not compatible with the Creative Commons Attribution-ShareAlike License.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki