Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 History of discovery  





2 Mechanism  





3 Measurement  





4 See also  





5 References  





6 External links  














Yarkovsky effect






Afrikaans
العربية
Беларуская
Català
Čeština
Deutsch
Ελληνικά
Español
فارسی
Français

Հայերեն
Italiano
עברית
Lëtzebuergesch
Magyar
Nederlands

Polski
Português
Română
Русский
Slovenščina
Svenska
Türkçe
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




Print/export  



















Appearance
   

 






From Wikipedia, the free encyclopedia
 


This is an old revision of this page, as edited by Jeffryfisher (talk | contribs)at02:21, 10 February 2017 (Measurement: Don't use the word "impact" figuratively, especially with asteroids (awkward)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
(diff)  Previous revision | Latest revision (diff) | Newer revision  (diff)

Yarkovsky effect:
1. Radiation from asteroid's surface
2. Prograde rotating asteroid
2.1 Location with "Afternoon"
3. Asteroid's orbit
4. Radiation from Sun

The Yarkovsky effect is a force acting on a rotating body in space caused by the anisotropic emission of thermal photons, which carry momentum. It is usually considered in relation to meteoroids or small asteroids (about 10 cm to 10 km in diameter), as its influence is most significant for these bodies.

History of discovery

The effect was discovered by the Russian civil engineer Ivan Osipovich Yarkovsky (1844–1902), who worked on scientific problems in his spare time. Writing in a pamphlet around the year 1900, Yarkovsky noted that the diurnal heating of a rotating object in space would cause it to experience a force that, while tiny, could lead to large long-term effects in the orbits of small bodies, especially meteoroids and small asteroids. Yarkovsky's insight would have been forgotten had it not been for the Estonian astronomer Ernst J. Öpik (1893–1985), who read Yarkovsky's pamphlet sometime around 1909. Decades later, Öpik, recalling the pamphlet from memory, discussed the possible importance of the Yarkovsky effect on movement of meteoroids about the Solar System.[1]

Mechanism

The Yarkovsky effect is a consequence of the fact that change in the temperature of an object warmed by radiation (and therefore the intensity of thermal radiation from the object) lags behind changes in the incoming radiation. That is, the surface of the object takes time to become warm when first illuminated; and takes time to cool down when illumination stops. In general there are two components to the effect:

In general, the effect is size dependent, and will affect the semi-major axis of smaller asteroids, while leaving large asteroids practically unaffected. For kilometre-sized asteroids, the Yarkovsky effect is minuscule over short periods: the force on asteroid 6489 Golevka has been estimated at about 0.25 newton, for a net acceleration of 10−10 m/s². But it is steady; over millions of years an asteroid's orbit can be perturbed enough to transport it from the asteroid belt to the inner Solar System.

The above details can become more complicated for bodies in strongly eccentric orbits.

Measurement

The effect was first measured in 1991–2003 on the asteroid 6489 Golevka. The asteroid drifted 15 km from its predicted position over twelve years (the orbit was established with great precision by a series of radar observations in 1991, 1995 and 1999) from the Arecibo radio telescope.[3]

Without direct measurement, it is very hard to predict the exact result of the Yarkovsky effect on a given asteroid's orbit. This is because the magnitude of the effect depends on many variables that are hard to determine from the limited observational information that is available. These include the exact shape of the asteroid, its orientation, and its albedo. Calculations are further complicated by the effects of shadowing and thermal "reillumination", whether caused by local craters or a possible overall concave shape. The Yarkovsky effect also competes with radiation pressure, whose net effect may cause similar small long-term forces for bodies with albedo variations and/or non-spherical shapes.

As an example, even for the simple case of the pure seasonal Yarkovsky effect on a spherical body in a circular orbit with 90° obliquity, semi-major axis changes could differ by as much as a factor of two between the case of a uniform albedo and the case of a strong north/south albedo asymmetry. Depending on the object's orbit and spin axis, the Yarkovsky change of the semi-major axis may be reversed simply by changing from a spherical to a non-spherical shape.

Despite these difficulties, utilizing the Yarkovsky effect is one scenario under investigation to alter the course of potentially Earth-impacting near-Earth asteroids. Possible asteroid deflection strategies include "painting" the surface of the asteroid or focusing solar radiation onto the asteroid to alter the intensity of the Yarkovsky effect and so alter the orbit of the asteroid away from a collision with Earth.[4] The OSIRIS-REx mission, launched in September 2016, will study the Yarkovsky effect on asteroid Bennu.[5]

See also

References

  1. ^ Öpik, E. J. (1951). "Collision probabilities with the planets and the distribution of interplanetary matter". Proceedings of the Royal Irish Academy. 54A: 165–199. JSTOR 20488532.
  • ^ a b Bottke, Jr., William F.; et al. (2006). "The Yarkovsky and YORP Effects: Implications for Asteroid Dynamics". Annu. Rev. Earth Planet. Sci. 34: 157–191. Bibcode:2006AREPS..34..157B. doi:10.1146/annurev.earth.34.031405.125154.
  • ^ Chesley, Steven R.; et al. (2003). "Direct Detection of the Yarkovsky Effect via Radar Ranging to Asteroid 6489 Golevka". Science. 302 (5651): 1739–1742. Bibcode:2003Sci...302.1739C. doi:10.1126/science.1091452.
  • ^ http://tamutimes.tamu.edu/2013/02/21/asteroids-no-match-for-paint-gun-says-prof/
  • ^ OSIRIS-REx - Q &A
  • External links


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Yarkovsky_effect&oldid=764641187"

    Category: 
    Orbital perturbations
     



    This page was last edited on 10 February 2017, at 02:21 (UTC).

    This version of the page has been revised. Besides normal editing, the reason for revision may have been that this version contains factual inaccuracies, vandalism, or material not compatible with the Creative Commons Attribution-ShareAlike License.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki