Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Basis for separation  





2 Detecting proteins  





3 Common techniques  



3.1  IPG-DALT  





3.2  IEF SDS-PAGE  







4 2D gel analysis software  





5 See also  





6 References  





7 External links  














Two-dimensional gel electrophoresis






العربية
Català
Deutsch
Eesti
Español
Français
Galego
Bahasa Indonesia
Italiano
עברית

Português
Русский
Türkçe

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from 2-D electrophoresis)

2D-Gels (Coomassie stained)
Robots are used for the isolation of protein spots from 2D gels in modern laboratories.

Two-dimensional gel electrophoresis, abbreviated as 2-DEor2-D electrophoresis, is a form of gel electrophoresis commonly used to analyze proteins. Mixtures of proteins are separated by two properties in two dimensions on 2D gels. 2-DE was first independently introduced by O'Farrell[1] and Klose[2] in 1975.

Basis for separation

[edit]

2-D electrophoresis begins with electrophoresis in the first dimension and then separates the molecules perpendicularly from the first to create an electropherogram in the second dimension. In electrophoresis in the first dimension, molecules are separated linearly according to their isoelectric point. In the second dimension, the molecules are then separated at 90 degrees from the first electropherogram according to molecular mass. Since it is unlikely that two molecules will be similar in two distinct properties, molecules are more effectively separated in 2-D electrophoresis than in 1-D electrophoresis.

The two dimensions that proteins are separated into using this technique can be isoelectric point, protein complex mass in the native state, or protein mass.

Detecting proteins

[edit]

The result of this is a gel with proteins spread out on its surface. These proteins can then be detected by a variety of means, but the most commonly used stains are silver and Coomassie brilliant blue staining. In the former case, a silver colloid is applied to the gel. The silver binds to cysteine groups within the protein. The silver is darkened by exposure to ultra-violet light. The amount of silver can be related to the darkness, and therefore the amount of protein at a given location on the gel. This measurement can only give approximate amounts, but is adequate for most purposes. Silver staining is 100x more sensitive than Coomassie brilliant blue with a 40-fold range of linearity.[3]

Molecules other than proteins can be separated by 2D electrophoresis. In supercoiling assays, coiled DNA is separated in the first dimension and denatured by a DNA intercalator (such as ethidium bromide or the less carcinogenic chloroquine) in the second. This is comparable to the combination of native PAGE/SDS-PAGE in protein separation.

Common techniques

[edit]

IPG-DALT

[edit]

A common technique is to use an Immobilized pH gradient (IPG) in the first dimension. This technique is referred to as IPG-DALT. The sample is first separated onto IPG gel (which is commercially available) then the gel is cut into slices for each sample which is then equilibrated in SDS-mercaptoethanol and applied to an SDS-PAGE gel for resolution in the second dimension. Typically IPG-DALT is not used for quantification of proteins due to the loss of low molecular weight components during the transfer to the SDS-PAGE gel.[4]

IEF SDS-PAGE

[edit]

See Isoelectric focusing

2D gel analysis software

[edit]
Warping: Images of two 2D electrophoresis gels, overlaid with Delta2D. First image is colored in orange, second one colored in blue. Due to running differences, corresponding spots do not overlap.
Warping: Images of two 2D electrophoresis gels after warping. First image is colored in orange, second one colored in blue. Corresponding spots overlap after warping. Common spots are colored black, orange spots are only present (or much stronger) on the first image, blue spots are only present (or much stronger) on the second image.

Inquantitative proteomics, these tools primarily analyze bio-markers by quantifying individual proteins, and showing the separation between one or more protein "spots" on a scanned image of a 2-DE gel. Additionally, these tools match spots between gels of similar samples to show, for example, proteomic differences between early and advanced stages of an illness. Software packages include Delta2D (discontinued), ImageMaster (discontinued), Melanie, PDQuest (discontinued), SameSpots and REDFIN – among others.[citation needed] While this technology is widely utilized, the intelligence has not been perfected. For example, while PDQuest and SameSpots tend to agree on the quantification and analysis of well-defined well-separated protein spots, they deliver different results and analysis tendencies with less-defined less-separated spots.[5] Comparative studies have previously been published to guide researchers on the "best" software for their analysis.[6] Although typically used for standard gel electrophoresis, Sciugo can also be used for figure-creation and quantification.

Challenges for automatic software-based analysis include incompletely separated (overlapping) spots (less-defined or separated), weak spots / noise (e.g., "ghost spots"), running differences between gels (e.g., protein migrates to different positions on different gels), unmatched/undetected spots, leading to missing values,[7][8] mismatched spots, errors in quantification (several distinct spots may be erroneously detected as a single spot by the software and parts of a spot may be excluded from quantification), and differences in software algorithms and therefore analysis tendencies

Generated picking lists can be exported from some software packages[9] and used for the automated in-gel digestion of protein spots, and subsequent identification of the proteins by mass spectrometry. Mass spectrometry analysis can identify precise mass measurements along with the sequencing of peptides that range from 1000–4000 atomic mass units. [10] For an overview of the current approach for software analysis of 2DE gel images, see Berth et al.[11] or Bandow et al.[12]

See also

[edit]

References

[edit]
  1. ^ O'Farrell, PH (1975). "High resolution two-dimensional electrophoresis of proteins". J. Biol. Chem. 250 (10): 4007–21. doi:10.1016/S0021-9258(19)41496-8. PMC 2874754. PMID 236308.
  • ^ Klose, J (1975). "Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals". Humangenetik. 26 (3): 231–43. doi:10.1007/bf00281458. PMID 1093965. S2CID 30981877.
  • ^ Switzer RC 3rd, Merril CR, Shifrin S (1979). "A highly sensitive silver stain for detecting proteins and peptides in polyacrylamide gels". Analytical Biochemistry. 98 (1): 231–37. doi:10.1016/0003-2697(79)90732-2. PMID 94518.
  • ^ Mikkelsen, Susan; Cortón, Eduardo (2004). Bioanalytical Chemistry. John Wiley & Sons, Inc. p. 224. ISBN 978-0-471-62386-1.
  • ^ Arora PS, Yamagiwa H, Srivastava A, Bolander ME, Sarkar G (2005). "Comparative evaluation of two two-dimensional gel electrophoresis image analysis software applications using synovial fluids from patients with joint disease". J Orthop Sci. 10 (2): 160–66. doi:10.1007/s00776-004-0878-0. PMID 15815863. S2CID 45193214.
  • ^ Kang, Yunyi; Techanukul, Tanasit; Mantalaris, Anthanasios; Nagy, Judit M. (February 2009). "Comparison of three commercially available DIGE analysis software packages: minimal user intervention in gel-based proteomics". Journal of Proteome Research. 8 (2): 1077–1084. doi:10.1021/pr800588f. ISSN 1535-3893. PMID 19133722.
  • ^ Pedreschi R, Hertog ML, Carpentier SC, et al. (April 2008). "Treatment of missing values for multivariate statistical analysis of gel-based proteomics data". Proteomics. 8 (7): 1371–83. doi:10.1002/pmic.200700975. hdl:1942/8262. PMID 18383008. S2CID 21152053.
  • ^ What are missing values, and why are they a problem?
  • ^ "2-D Gel Electrophoresis Proteomics Analysis Software | SameSpots". TotalLab. Retrieved 2024-07-08.
  • ^ Lepedda, Antonio J, and Marilena Formato. "Applications of Two-Dimensional Electrophoresis Technology to the Study of Atherosclerosis." EJIFCC vol. 19,3 146–159. 20 Dec. 2008
  • ^ Berth M, Moser FM, Kolbe M, Bernhardt J (October 2007). "The state of the art in the analysis of two-dimensional gel electrophoresis images". Appl. Microbiol. Biotechnol. 76 (6): 1223–43. doi:10.1007/s00253-007-1128-0. PMC 2279157. PMID 17713763.
  • ^ Bandow JE, Baker JD, Berth M, et al. (August 2008). "Improved image analysis workflow for 2-D gels enables large-scale 2-D gel-based proteomics studies--COPD biomarker discovery study". Proteomics. 8 (15): 3030–41. doi:10.1002/pmic.200701184. PMID 18618493. S2CID 206361897.
  • [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Two-dimensional_gel_electrophoresis&oldid=1233343207"

    Categories: 
    Laboratory techniques
    Electrophoresis
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Articles needing cleanup from December 2023
    All pages needing cleanup
    Cleanup tagged articles with a reason field from December 2023
    Wikipedia pages needing cleanup from December 2023
    All articles with unsourced statements
    Articles with unsourced statements from October 2017
     



    This page was last edited on 8 July 2024, at 15:35 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki