Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Chemical synthesis  





2 Mechanism of action  





3 Dosage  





4 Interactions  





5 Contraindications  





6 See also  





7 References  





8 External links  














Pralidoxime






العربية
Deutsch
Español
فارسی
Français
Italiano

ି
Polski
Português
Русский
Српски / srpski
Srpskohrvatski / српскохрватски
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from 2-PAM)

Pralidoxime
Clinical data
Other names1-methylpyridine-6-carbaldehyde oxime
AHFS/Drugs.comMicromedex Detailed Consumer Information
Pregnancy
category
  • C
ATC code
Legal status
Legal status
  • In general: ℞ (Prescription only)
Identifiers
  • 2-[(hydroxyimino)methyl]-1-methylpyridin-1-ium

CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard100.027.080 Edit this at Wikidata
Chemical and physical data
FormulaC7H9N2O+
Molar mass137.162 g·mol−1
3D model (JSmol)
  • ON=Cc1cccc[n+]1C

  • InChI=1S/C7H8N2O/c1-9-5-3-2-4-7(9)6-8-10/h2-6H,1H3/p+1 checkY

  • Key:JBKPUQTUERUYQE-UHFFFAOYSA-O checkY

  (verify)

Pralidoxime (2-pyridine aldoxime methyl chloride) or 2-PAM, usually as the chloride or iodide salts, belongs to a family of compounds called oximes that bind to organophosphate-inactivated acetylcholinesterase.[1] It is used to treat organophosphate poisoning[2] in conjunction with atropine and either diazepamormidazolam. It is a white solid.

Chemical synthesis

[edit]

Pralidoxime, 2-pyridinaldoxime methylchloride, is prepared by treating pyridine-2-carboxaldehyde with hydroxylamine. The resulting pyridine-2-aldoxime is alkylated with methyl iodide giving pralidoxime as the iodide salt.[3][4][5][6]

Mechanism of action

[edit]

Pralidoxime is typically used in cases of organophosphate poisoning. Organophosphates such as sarin bind to the hydroxy component (the esteric site) of the active site of the acetylcholinesterase enzyme, thereby blocking its activity. Pralidoxime binds to the other half (the unblocked, anionic site) of the active site and then displaces the phosphate from the serine residue. The conjoined poison / antidote then unbinds from the site, and thus regenerates the fully functional enzyme.

Some phosphate-acetylcholinesterase conjugates continue to react after the phosphate docks to the esteric site, evolving into a more recalcitrant state. This process is known as aging. Aged phosphate-acetylcholinesterase conjugate is resistant to antidotes such as pralidoxime. Pralidoxime is often used with atropine (a muscarinic antagonist) to help reduce the parasympathetic effects of organophosphate poisoning. Pralidoxime is only effective in organophosphate toxicity. It has no beneficial effects if the acetylcholinesterase enzyme is carbamylated, as occurs with neostigmine, pyridostigmine, or insecticides such as carbaryl.

Pralidoxime has an important role in reversing paralysis of the respiratory muscles but due to its poor blood–brain barrier penetration, it has little effect on centrally-mediated respiratory depression. Atropine, which is choice of drug to antagonise the muscarinic effects of organophosphates, is administered even before pralidoxime during the treatment of organophosphate poisoning. While the efficacy of atropine has been well-established, clinical experience with pralidoxime has led to widespread doubt about its efficacy in treatment of organophosphorus poisoning.[7]

Dosage

[edit]

Intravenous infusions can lead to respiratory or cardiac arrest if given too quickly.[8]

Interactions

[edit]

When atropine and pralidoxime are used together, the signs of atropinization (flushing, mydriasis, tachycardia, dryness of the mouth and nose) may occur earlier than might be expected when atropine is used alone. This is especially true if the total dose of atropine has been large and the administration of pralidoxime has been delayed.

The following precautions should be kept in mind in the treatment of anticholinesterase poisoning, although they do not bear directly on the use of pralidoxime: since barbiturates are potentiated by the anticholinesterases, they should be used cautiously in the treatment of convulsions; morphine, theophylline, aminophylline, succinylcholine, reserpine, and phenothiazine-type tranquilizers should be avoided in patients with organophosphate poisoning.

Contraindications

[edit]

There are no known absolute contraindications for the use of pralidoxime. Relative contraindications include known hypersensitivity to the drug and other situations in which the risk of its use clearly outweighs possible benefit.

See also

[edit]

References

[edit]
  1. ^ Jokanović M, Stojiljković MP (December 2006). "Current understanding of the application of pyridinium oximes as cholinesterase reactivators in treatment of organophosphate poisoning". European Journal of Pharmacology. 553 (1–3): 10–7. doi:10.1016/j.ejphar.2006.09.054. PMID 17109842.
  • ^ Jokanović M, Prostran M (2009). "Pyridinium oximes as cholinesterase reactivators. Structure-activity relationship and efficacy in the treatment of poisoning with organophosphorus compounds". Current Medicinal Chemistry. 16 (17): 2177–88. doi:10.2174/092986709788612729. PMID 19519385.
  • ^ US 2816113, Nachmansonn E, Ginsburg S, published 1957 
  • ^ US 3123613, Black LP, published 1964 
  • ^ US 3140289, Easterday DE, Kondritzer AA, published 1964 
  • ^ US 3155674, McDowell WB, published 1964 
  • ^ Banerjee I, Tripathi SK, Roy AS (2014). "Efficacy of pralidoxime in organophosphorus poisoning: revisiting the controversy in Indian setting". Journal of Postgraduate Medicine. 60 (1): 27–30. doi:10.4103/0022-3859.128803. PMID 24625936.
  • ^ Baxter Healthcare Corporation 2006, Protopam Prescribing Information
  • [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Pralidoxime&oldid=1235014554"

    Categories: 
    Cholinesterase reactivators
    Aldoximes
    Peripherally selective drugs
    Quaternary ammonium compounds
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Articles needing additional references from March 2023
    All articles needing additional references
    Drugs with non-standard legal status
    ECHA InfoCard ID from Wikidata
    Drugboxes which contain changes to watched fields
     



    This page was last edited on 17 July 2024, at 08:19 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki