Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Biography  





2 Research  





3 References  





4 External links  














Adolf Windaus






العربية
Azərbaycanca
تۆرکجه

 / Bân-lâm-gú
Беларуская
Български
Català
Čeština
Dansk
Deutsch
Español
Euskara
فارسی
Français
Gàidhlig
Galego
/Hak-kâ-ngî

Հայերեն
Hrvatski
Ido
Bahasa Indonesia
Italiano
עברית

Kiswahili
Latina
Magyar

مصرى
مازِرونی
Bahasa Melayu
Nederlands

Norsk bokmål
Occitan
Oʻzbekcha / ўзбекча
پنجابی
Polski
Português
Română
Русский
Shqip
Simple English
Slovenčina
Српски / srpski
Srpskohrvatski / српскохрватски
Suomi
Svenska
ி
Татарча / tatarça
Türkçe
Українська
اردو
Vahcuengh
Tiếng Vit

Yorùbá


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Adolf Otto Reinhold Windaus)

Adolf Windaus
Born

Adolf Otto Reinhold Windaus


25 December 1876
Died9 June 1959(1959-06-09) (aged 82)
NationalityGerman
Known forSynthesis of vitamin D
AwardsPour le Mérite for Sciences and Arts (1952)
Goethe Medal (1941)
Nobel Prize for Chemistry (1928)
Scientific career
FieldsOrganic chemistry
biochemistry
Doctoral advisorHeinrich Kiliani[citation needed]
Doctoral studentsAdolf Butenandt
Erhard Fernholz
Adolf Windaus' grave in Göttingen

Adolf Otto Reinhold Windaus (German pronunciation: [ˈaːdɔlf ˈvɪndaʊs] ; 25 December 1876 – 9 June 1959) was a German chemist who won a Nobel Prize in Chemistry in 1928 for his work on sterols and their relation to vitamins. He was the doctoral advisorofAdolf Butenandt who also won a Nobel Prize in Chemistry in 1939.

Biography

[edit]

He was born in Berlin, Germany on 25 December 1876 to a family who owned a drapery business. He attended a prestigious French grammar school, where he focused primarily on literature. Windaus began studying medicine at the University of Berlin in about 1895 then proceeded to study chemistry at the University of Freiburg. He married Elizabeth Resau in 1915 and they had three children together, Günter, Gustav, and Margarete. After earning his PhD in medicine, Windaus became the head of the chemical institute at the University of Göttingen from 1915 to 1944. Throughout his life, Windaus won many awards including the Goethe Medal, the Pasteur Medal, and the Nobel Prize for Chemistry. In addition to his many accomplishments and discoveries in science, Windaus was also one of the very few German chemists who did not work with the Nazis and openly opposed their regime[citation needed]. As the head of the chemical institute at the University of Göttingen, Windaus personally defended one of his Jewish graduate students from dismissal. Windaus believed that while every man had a moral code, his science was motivated by curiosity, and was not driven by politics, ethics, and applications of his discoveries. This viewpoint caused Windaus to decline to research poison gas during World War I.[1]

Research

[edit]

He was involved in the discovery of the transformation of cholesterol through several steps to vitamin D3 (Cholecalciferol). He gave his patents to Merck and Bayer and they brought out the medical Vigantol in 1927.[2]

Sterols

Windaus began his research by studying sterols. In particular, Windaus studied cholesterol, which is the best known sterol. Sterols are nitrogen-free secondary alcohols with high molecular weight that contain alicylic systems, or hydrocarbon rings. Cholesterol was first discovered in human gallstones and is a mono-unsaturated alcohol found in all higher animals, both as a free alcohol and fatty acid ester. Windaus was fascinated by how cholesterol levels in the body fluctuate, in particular how it increases during pregnancy and decreases during disease. He researched sterols in insects, echinodermata, and sponges, called zoosterols. Many of these zoosterols have the same formula as cholesterol, except for spongosterol, which is a saturated sterol and more different from cholesterol than the other zoosterols. In plants, the sterols are known as phytosterols. Windaus found that the most common phytosterols are sitosterols, which have the same formula as cholesterol. There are also saturated phytosterols that are mixed in with these unsaturated sitosterols in small quantities. There are also alcohol-like phytosterols, which contain one more hydroxyl group than sitosterols and a different number of carbons. Mycosterols are sterols which are found in fungi. Ergosterol is one significant mycosterol as it has three double bonds, in comparison to the one double bond in cholesterol. In his research, Windaus did not find sterols to exist in bacteria, which he found to be surprising. This research of the composition of sterols, along with their connection to vitamins, earned Windaus the Nobel Prize in Chemistry in 1928.[3][4]

Vitamin D2 and D3

Rickets, a bone disease resulting from vitamin D deficiency, was originally treated in the early 1900s through essential dietary factors such as whole milk or cod-liver oil. It was also postulated that increase sunlight was improving conditions, but was improperly concluded that cholesterol was the precursor activated via UV light.[5] In testing this, investigators under Windaus’ instruction found that completely pure cholesterol - converted into its dibromide and recrystallized - had lost its antirachitic effects upon irradiation.[6] It was then postulated that a different substance associated with ‘chemically pure’ cholesterol through all usual stages of purification is the precursor to vitamin D.

The impurity was able to precipitate with digitonin, showing chemical properties of a steroid with three double bonds. The three UV absorption peaks (see image) of the active impurity was used to purify, and become highly concentrated through high-vacuum distillation and charcoal adsorption techniques. In evaluating a variety of sterols that showed antirachitic activity upon irradiation, done so in consultation with A.F. Hess, O. Rosenheim, and T.A. Webster, ergosterol (see image)- Ca27H42 – was found to be the only precursor of vitamin D, convertible under wavelength between 253 and 302 nm.[6] Similarities of ergosterol to that of the active fraction from cholesterol included similar UV spectrums, rapid destruction by oxidation, and production of the same color reaction with sulfuric acid.

This production of Vitamin D2, or calciferol (see image), was a complete cure to rachitis – 100,000 times more effective than fish liver oil – and Windaus and his group were able to determine its chemical properties. This included being isomeric with ergosterol with a hydroxyl group and three conjugated double bonds; the correct structure was confirmed in 1936.The possibility of polymerization was tested to be inaccurate through evaluating the molecular weight, and were also able to denounce certain isomerization. The secondary alcohol displacing to a double bond via Zerewitinoff's method (see image) was shown to not occur, as well as the double bond transforming to a steric rearrangement didn't occur under observance of titration and catalytic hydrogenation.[5] Ergosterol was originally found in fungi and not animal organisms, so the question of obtaining Vitamin D from sunlight was still in question and studied by Windaus long after receiving the Nobel Prize. In isolating and identifying 7-dehydrocholesterol in hog skin, and later human skin, whole milk, and animal liver, it too was antirachitic upon irradiation. This was already a known compound derived from cholesterol, and the new irradiation product was named Vitamin D3, or cholecalciferol (see image). Windaus established the structure by investigating the photochemical reactions within its formation.[6]

vitamin D3
7-Dehydrocholesterol

References

[edit]

Notes

  1. ^ Kyle, Robert A.; Shampo, Marc A. (1 February 2001). "Adolf Windaus—Nobel Prize for Research on Sterols". Mayo Clinic Proceedings. 76 (2): 119. doi:10.1016/S0025-6196(11)63115-7. ISSN 0025-6196. PMID 11213297.
  • ^ Haas, Jochen (2007).『Vigantol – Adolf Windaus und die Geschichte des Vitamin D』[Vigantol – Adolf Windaus and the history of vitamin D]. Wurzbg Medizinhist Mitt. 26: 144–81. PMID 18354894.
  • ^ "Adolf Windaus". www.nndb.com. Retrieved 29 May 2019.
  • ^ "The Nobel Prize in Chemistry 1928 – Biographical". NobelPrize.org. Retrieved 29 May 2019.
  • ^ a b Wolf, George (2004). "The Discovery of Vitamin D: The Contribution of Adolf Windaus". The Journal of Nutrition. 134 (6). Oxford University Press (OUP): 1299–1302. doi:10.1093/jn/134.6.1299. ISSN 0022-3166. PMID 15173387.
  • ^ a b c "The Nobel Prize in Chemistry 1928". NobelPrize.org. 12 December 1928. Retrieved 1 June 2021.
  • Sources

  • H. H. Inhoffen (1960). "Adolf Windaus zum Gedächtnis". Naturwissenschaften. 47 (5): 97–99. Bibcode:1960NW.....47...97I. doi:10.1007/BF00628571. S2CID 27797852.
  • George Wolf (2004). "The Discovery of Vitamin D: The Contribution of Adolf Windaus". J. Nutr. 134 (6): 1299–1302. doi:10.1093/jn/134.6.1299. PMID 15173387.
  • Adolf Butenandt (1960). "Zur Geschichte der Sterin- und Vitamin-Forschung. Adolf Windaus zum Gedächtnis". J. Nutr. 72 (18): 645–651. Bibcode:1960AngCh..72..645B. doi:10.1002/ange.19600721802.
  • [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Adolf_Windaus&oldid=1226380355"

    Categories: 
    1876 births
    1959 deaths
    20th-century German chemists
    German Nobel laureates
    Nobel laureates in Chemistry
    Scientists from Berlin
    Scientists from the Province of Brandenburg
    Recipients of the Pour le Mérite (civil class)
    University of Freiburg alumni
    Academic staff of the University of Freiburg
    Humboldt University of Berlin alumni
    Academic staff of the University of Innsbruck
    Academic staff of the University of Göttingen
    Knights Commander of the Order of Merit of the Federal Republic of Germany
    Französisches Gymnasium Berlin alumni
    Hidden categories: 
    Pages using the Phonos extension
    Articles with short description
    Short description is different from Wikidata
    Use dmy dates from June 2021
    Biography articles needing translation from German Wikipedia
    All articles with unsourced statements
    Articles with unsourced statements from August 2017
    Articles with hCards
    Pages with German IPA
    Pages including recorded pronunciations
    Articles with unsourced statements from March 2023
    Commons link is on Wikidata
    Nobelprize template using Wikidata property P8024
    Articles with FAST identifiers
    Articles with ISNI identifiers
    Articles with VIAF identifiers
    Articles with WorldCat Entities identifiers
    Articles with BNF identifiers
    Articles with BNFdata identifiers
    Articles with GND identifiers
    Articles with ICCU identifiers
    Articles with J9U identifiers
    Articles with LCCN identifiers
    Articles with NKC identifiers
    Articles with NTA identifiers
    Articles with Leopoldina identifiers
    Articles with Scopus identifiers
    Articles with DTBIO identifiers
    Articles with SNAC-ID identifiers
    Articles with SUDOC identifiers
     



    This page was last edited on 30 May 2024, at 07:54 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki