Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 History and etymology  





2 Identifying angles  





3 Types  



3.1  Individual angles  





3.2  Vertical and adjacent angle pairs  





3.3  Combining angle pairs  





3.4  Polygon-related angles  





3.5  Plane-related angles  







4 Measuring angles  



4.1  Units  





4.2  Dimensional analysis  





4.3  Signed angles  





4.4  Equivalent angles  





4.5  Related quantities  







5 Angles between curves  





6 Bisecting and trisecting angles  





7 Dot product and generalisations  



7.1  Inner product  





7.2  Angles between subspaces  





7.3  Angles in Riemannian geometry  





7.4  Hyperbolic angle  







8 Angles in geography and astronomy  





9 See also  





10 Notes  





11 References  





12 Bibliography  





13 External links  














Angle






Адыгэбзэ
Afrikaans
Alemannisch
العربية
Aragonés
ܐܪܡܝܐ
Արեւմտահայերէն

Asturianu
Avañe'
Aymar aru
Azərbaycanca
تۆرکجه

 / Bân-lâm-gú
Башҡортса
Беларуская
Беларуская (тарашкевіца)
Bikol Central
Български
Bosanski
Brezhoneg
Буряад
Català
Чӑвашла
Čeština
ChiShona
Cymraeg
Dansk
Deutsch
Eesti
Ελληνικά
Эрзянь
Español
Esperanto
Euskara
فارسی
Fiji Hindi
Français
Gaeilge
Gàidhlig
Galego


Հայերեն
ि
Hrvatski
Ido
Ilokano
Bahasa Indonesia
Interlingua
IsiZulu
Íslenska
Italiano
עברית


Қазақша
Kernowek
Kiswahili
Kreyòl ayisyen
Kriyòl gwiyannen
Kurdî
Кыргызча
Latina
Latviešu
Lietuvių
Limburgs
Lingála
Lombard
Magyar
Македонски
Malagasy



مصرى
مازِرونی
Bahasa Melayu
Мокшень
Монгол

Na Vosa Vakaviti
Nederlands

 

ߒߞߏ
Nordfriisk
Norsk bokmål
Norsk nynorsk
Occitan
Олык марий
Oʻzbekcha / ўзбекча

پنجابی
پښتو
Patois

Plattdüütsch
Polski
Português
Qırımtatarca
Română
Runa Simi
Русский
Саха тыла
Shqip
Sicilianu

Simple English
Slovenčina
Slovenščina
Словѣньскъ / 
Soomaaliga
کوردی
Српски / srpski
Srpskohrvatski / српскохрватски
Sunda
Suomi
Svenska
Tagalog
ி
Татарча / tatarça



Türkçe
Українська
اردو
Tiếng Vit

Winaray

ייִדיש


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Angular measurement)

two line bent at a point
A green angle formed by two red rays on the Cartesian coordinate system

InEuclidean geometry, an angle is the figure formed by two rays, called the sides of the angle, sharing a common endpoint, called the vertex of the angle.[1] Angles formed by two rays are also known as plane angles as they lie in the plane that contains the rays. Angles are also formed by the intersection of two planes; these are called dihedral angles. Two intersecting curves may also define an angle, which is the angle of the rays lying tangent to the respective curves at their point of intersection.

The magnitude of an angle is called an angular measure or simply "angle". Angle of rotation is a measure conventionally defined as the ratio of a circular arc length to its radius, and may be a negative number. In the case of a geometric angle, the arc is centered at the vertex and delimited by the sides. In the case of a rotation, the arc is centered at the center of the rotation and delimited by any other point and its image by the rotation.

History and etymology[edit]

The word angle comes from the Latin word angulus, meaning "corner". Cognate words include the Greek ἀγκύλος (ankylοs) meaning "crooked, curved" and the English word "ankle". Both are connected with the Proto-Indo-European root *ank-, meaning "to bend" or "bow".[2]

Euclid defines a plane angle as the inclination to each other, in a plane, of two lines that meet each other and do not lie straight with respect to each other. According to the Neoplatonic metaphysician Proclus, an angle must be either a quality, a quantity, or a relationship. The first concept, angle as quality, was used by Eudemus of Rhodes, who regarded an angle as a deviation from a straight line; the second, angle as quality, by Carpus of Antioch, who regarded it as the interval or space between the intersecting lines; Euclid adopted the third: angle as a relationship.[3]

Identifying angles[edit]

Inmathematical expressions, it is common to use Greek letters (α, β, γ, θ, φ, . . . ) as variables denoting the size of some angle[4] (the symbol π is typically not used for this purpose to avoid confusion with the constant denoted by that symbol). Lower case Roman letters (abc, . . . ) are also used. In contexts where this is not confusing, an angle may be denoted by the upper case Roman letter denoting its vertex. See the figures in this article for examples.

The three defining points may also identify angles in geometric figures. For example, the angle with vertex A formed by the rays AB and AC (that is, the half-lines from point A through points B and C) is denoted ∠BACor. Where there is no risk of confusion, the angle may sometimes be referred to by a single vertex alone (in this case, "angle A").

In other ways, an angle denoted as, say, ∠BAC might refer to any of four angles: the clockwise angle from B to C about A, the anticlockwise angle from B to C about A, the clockwise angle from C to B about A, or the anticlockwise angle from C to B about A, where the direction in which the angle is measured determines its sign (see § Signed angles). However, in many geometrical situations, it is evident from the context that the positive angle less than or equal to 180 degrees is meant, and in these cases, no ambiguity arises. Otherwise, to avoid ambiguity, specific conventions may be adopted so that, for instance, ∠BAC always refers to the anticlockwise (positive) angle from B to C about A and ∠CAB the anticlockwise (positive) angle from C to B about A.

Types[edit]

Individual angles[edit]

There is some common terminology for angles, whose measure is always non-negative (see § Signed angles):

The names, intervals, and measuring units are shown in the table below:

Acute (a), obtuse (b), and straight (c) angles. The acute and obtuse angles are also known as oblique angles.
Reflex angle
Name   zero angle acute angle right angle obtuse angle straight angle reflex angle perigon
Unit Interval
turn   0 turn (0, 1/4) turn 1/4 turn (1/4, 1/2) turn 1/2 turn (1/2, 1) turn 1 turn
radian 0 rad (0, 1/2π) rad 1/2π rad (1/2π, π) rad π rad (π, 2π) rad 2π rad
degree   (0, 90 90° (90, 180)° 180° (180, 360)° 360°
gon   0g (0, 100)g 100g (100, 200)g 200g (200, 400)g 400g

Vertical and adjacent angle pairs[edit]

Angles A and B are a pair of vertical angles; angles C and D are a pair of vertical angles. Hatch marks are used here to show angle equality.

When two straight lines intersect at a point, four angles are formed. Pairwise, these angles are named according to their location relative to each other.

  • A pair of angles opposite each other, formed by two intersecting straight lines that form an "X"-like shape, are called vertical anglesoropposite anglesorvertically opposite angles. They are abbreviated as vert. opp. ∠s.[8]

The equality of vertically opposite angles is called the vertical angle theorem. Eudemus of Rhodes attributed the proof to Thales of Miletus.[9][10] The proposition showed that since both of a pair of vertical angles are supplementary to both of the adjacent angles, the vertical angles are equal in measure. According to a historical note,[10] when Thales visited Egypt, he observed that whenever the Egyptians drew two intersecting lines, they would measure the vertical angles to make sure that they were equal. Thales concluded that one could prove that all vertical angles are equal if one accepted some general notions such as:

When two adjacent angles form a straight line, they are supplementary. Therefore, if we assume that the measure of angle A equals x, the measure of angle C would be 180° − x. Similarly, the measure of angle D would be 180° − x. Both angle C and angle D have measures equal to 180° − x and are congruent. Since angle B is supplementary to both angles C and D, either of these angle measures may be used to determine the measure of Angle B. Using the measure of either angle C or angle D, we find the measure of angle B to be 180° − (180° − x) = 180° − 180° + x = x. Therefore, both angle A and angle B have measures equal to x and are equal in measure.

Angles A and B are adjacent.
  • Adjacent angles, often abbreviated as adj. ∠s, are angles that share a common vertex and edge but do not share any interior points. In other words, they are angles side by side or adjacent, sharing an "arm". Adjacent angles which sum to a right angle, straight angle, or full angle are special and are respectively called complementary, supplementary, and explementary angles (see § Combining angle pairs below).
  • Atransversal is a line that intersects a pair of (often parallel) lines and is associated with exterior angles, interior angles, alternate exterior angles, alternate interior angles, corresponding angles, and consecutive interior angles.[11]

    Combining angle pairs[edit]

    The angle addition postulate states that if B is in the interior of angle AOC, then

    I.e., the measure of the angle AOC is the sum of the measure of angle AOB and the measure of angle BOC.

    Three special angle pairs involve the summation of angles:

    The complementary angles a and b (b is the complementofa, and a is the complement of b.)
    • Complementary angles are angle pairs whose measures sum to one right angle (1/4 turn, 90°, or π/2 radians).[12] If the two complementary angles are adjacent, their non-shared sides form a right angle. In Euclidean geometry, the two acute angles in a right triangle are complementary because the sum of internal angles of a triangle is 180 degrees, and the right angle accounts for 90 degrees.

    The adjective complementary is from the Latin complementum, associated with the verb complere, "to fill up". An acute angle is "filled up" by its complement to form a right angle.

    The difference between an angle and a right angle is termed the complement of the angle.[13]

    If angles A and B are complementary, the following relationships hold:

    (The tangent of an angle equals the cotangent of its complement, and its secant equals the cosecant of its complement.)

    The prefix "co-" in the names of some trigonometric ratios refers to the word "complementary".

    The angles a and b are supplementary angles.
  • Two angles that sum to a straight angle (1/2 turn, 180°, or π radians) are called supplementary angles.[14]

    If the two supplementary angles are adjacent (i.e., have a common vertex and share just one side), their non-shared sides form a straight line. Such angles are called a linear pair of angles.[15] However, supplementary angles do not have to be on the same line and can be separated in space. For example, adjacent angles of a parallelogram are supplementary, and opposite angles of a cyclic quadrilateral (one whose vertices all fall on a single circle) are supplementary.

    If a point P is exterior to a circle with center O, and if the tangent lines from P touch the circle at points T and Q, then ∠TPQ and ∠TOQ are supplementary.

    The sines of supplementary angles are equal. Their cosines and tangents (unless undefined) are equal in magnitude but have opposite signs.

    In Euclidean geometry, any sum of two angles in a triangle is supplementary to the third because the sum of the internal angles of a triangle is a straight angle.

    Angles AOB and COD are conjugate as they form a complete angle. Considering magnitudes, 45° + 315° = 360°.
  • Two angles that sum to a complete angle (1 turn, 360°, or 2π radians) are called explementary anglesorconjugate angles.[16]

    The difference between an angle and a complete angle is termed the explement of the angle or conjugate of an angle.

  • Polygon-related angles[edit]

    Internal and external angles

    Plane-related angles[edit]

    Measuring angles[edit]

    The size of a geometric angle is usually characterized by the magnitude of the smallest rotation that maps one of the rays into the other. Angles of the same size are said to be equal congruentorequal in measure.

    In some contexts, such as identifying a point on a circle or describing the orientation of an object in two dimensions relative to a reference orientation, angles that differ by an exact multiple of a full turn are effectively equivalent. In other contexts, such as identifying a point on a spiral curve or describing an object's cumulative rotation in two dimensions relative to a reference orientation, angles that differ by a non-zero multiple of a full turn are not equivalent.

    The measure of angle θiss/r radians.

    To measure an angle θ, a circular arc centered at the vertex of the angle is drawn, e.g., with a pair of compasses. The ratio of the length s of the arc by the radius r of the circle is the number of radians in the angle:[20] Conventionally, in mathematics and the SI, the radian is treated as being equal to the dimensionless unit 1, thus being normally omitted.

    The angle expressed by another angular unit may then be obtained by multiplying the angle by a suitable conversion constant of the form k/2π, where k is the measure of a complete turn expressed in the chosen unit (for example, k = 360° for degrees or 400 grad for gradians):

    The value of θ thus defined is independent of the size of the circle: if the length of the radius is changed, then the arc length changes in the same proportion, so the ratio s/r is unaltered.[nb 1]

    Units[edit]

    Definition of 1 radian

    Throughout history, angles have been measured in various units. These are known as angular units, with the most contemporary units being the degree ( ° ), the radian (rad), and the gradian (grad), though many others have been used throughout history.[22] Most units of angular measurement are defined such that one turn (i.e., the angle subtended by the circumference of a circle at its centre) is equal to n units, for some whole number n. Two exceptions are the radian (and its decimal submultiples) and the diameter part.

    In the International System of Quantities, an angle is defined as a dimensionless quantity, and in particular, the radian unit is dimensionless. This convention impacts how angles are treated in dimensional analysis.

    The following table list some units used to represent angles.

    Name Number in one turn In degrees Description
    radian 2π ≈57°17′ The radian is determined by the circumference of a circle that is equal in length to the radius of the circle (n = 2π = 6.283...). It is the angle subtended by an arc of a circle that has the same length as the circle's radius. The symbol for radian is rad. One turn is 2π radians, and one radian is 180°/π, or about 57.2958 degrees. Often, particularly in mathematical texts, one radian is assumed to equal one, resulting in the unit rad being omitted. The radian is used in virtually all mathematical work beyond simple, practical geometry due, for example, to the pleasing and "natural" properties that the trigonometric functions display when their arguments are in radians. The radian is the (derived) unit of angular measurement in the SI.
    degree 360 The degree, denoted by a small superscript circle (°), is 1/360 of a turn, so one turn is 360°. One advantage of this old sexagesimal subunit is that many angles common in simple geometry are measured as a whole number of degrees. Fractions of a degree may be written in normal decimal notation (e.g., 3.5° for three and a half degrees), but the "minute" and "second" sexagesimal subunits of the『degree–minute–second』system (discussed next) are also in use, especially for geographical coordinates and in astronomy and ballistics (n = 360)
    arcminute 21,600 0°1′ The minute of arc (orMOA, arcminute, or just minute) is 1/60 of a degree = 1/21,600 turn. It is denoted by a single prime ( ′ ). For example, 3° 30′ is equal to 3 × 60 + 30 = 210 minutes or 3 + 30/60 = 3.5 degrees. A mixed format with decimal fractions is sometimes used, e.g., 3° 5.72′ = 3 + 5.72/60 degrees. A nautical mile was historically defined as an arcminute along a great circle of the Earth. (n = 21,600).
    arcsecond 1,296,000 0°0′1 The second of arc (orarcsecond, or just second) is 1/60 of a minute of arc and 1/3600 of a degree (n = 1,296,000). It is denoted by a double prime ( ″ ). For example, 3° 7′ 30″ is equal to 3 + 7/60 + 30/3600 degrees, or 3.125 degrees. The arcsecond is the angle used to measure a parsec
    grad 400 0°54′ The grad, also called grade, gradian, or gon. It is a decimal subunit of the quadrant. A right angle is 100 grads. A kilometre was historically defined as a centi-grad of arc along a meridian of the Earth, so the kilometer is the decimal analog to the sexagesimal nautical mile (n = 400). The grad is used mostly in triangulation and continental surveying.
    turn 1 360° The turn is the angle subtended by the circumference of a circle at its centre. A turn is equal to 2πor𝜏 (tau) radians.
    hour angle 24 15° The astronomical hour angleis1/24 turn. As this system is amenable to measuring objects that cycle once per day (such as the relative position of stars), the sexagesimal subunits are called minute of time and second of time. These are distinct from, and 15 times larger than, minutes and seconds of arc. 1 hour = 15° = π/12 rad = 1/6 quad = 1/24 turn = 16+2/3 grad.
    (compass) point 32 11.25° The pointorwind, used in navigation, is 1/32 of a turn. 1 point = 1/8 of a right angle = 11.25° = 12.5 grad. Each point is subdivided into four quarter points, so one turn equals 128.
    milliradian 2000π ≈0.057° The true milliradian is defined as a thousandth of a radian, which means that a rotation of one turn would equal exactly 2000π mrad (or approximately 6283.185 mrad). Almost all scope sights for firearms are calibrated to this definition. In addition, three other related definitions are used for artillery and navigation, often called a 'mil', which are approximately equal to a milliradian. Under these three other definitions, one turn makes up for exactly 6000, 6300, or 6400 mils, spanning the range from 0.05625 to 0.06 degrees (3.375 to 3.6 minutes). In comparison, the milliradian is approximately 0.05729578 degrees (3.43775 minutes). One "NATO mil" is defined as 1/6400 of a turn. Just like with the milliradian, each of the other definitions approximates the milliradian's useful property of subtensions, i.e. that the value of one milliradian approximately equals the angle subtended by a width of 1 meter as seen from 1 km away (2π/6400 = 0.0009817... ≈ 1/1000).
    binary degree 256 1°33'45" The binary degree, also known as the binary radianorbradorbinary angular measurement (BAM).[23] The binary degree is used in computing so that an angle can be efficiently represented in a single byte (albeit to limited precision). Other measures of the angle used in computing may be based on dividing one whole turn into 2n equal parts for other values of n.

    [24] It is 1/256 of a turn.[23]

    π radian 2 180° The multiples of π radians (MULπ) unit is implemented in the RPN scientific calculator WP 43S.[25] See also: IEEE 754 recommended operations
    quadrant 4 90° One quadrant is a 1/4 turn and also known as a right angle. The quadrant is the unit in Euclid's Elements. In German, the symbol has been used to denote a quadrant. 1 quad = 90° = π/2 rad = 1/4 turn = 100 grad.
    sextant 6 60° The sextant was the unit used by the Babylonians,[26][27] The degree, minute of arc and second of arc are sexagesimal subunits of the Babylonian unit. It is straightforward to construct with ruler and compasses. It is the angle of the equilateral triangle or is 1/6 turn. 1 Babylonian unit = 60° = π/3 rad ≈ 1.047197551 rad.
    hexacontade 60 The hexacontade is a unit used by Eratosthenes. It equals 6°, so a whole turn was divided into 60 hexacontades.
    pechus 144 to 180 2° to 2+1/2° The pechus was a Babylonian unit equal to about 2° or 2+1/2°.
    diameter part ≈376.991 ≈0.95493° The diameter part (occasionally used in Islamic mathematics) is 1/60 radian. One "diameter part" is approximately 0.95493°. There are about 376.991 diameter parts per turn.
    zam 224 ≈1.607° In old Arabia, a turn was subdivided into 32 Akhnam, and each akhnam was subdivided into 7 zam so that a turn is 224 zam.

    Dimensional analysis[edit]

    Plane angle may be defined as θ = s/r, where θ is the subtended angle in radians, s is arc length, and r is radius. One radian corresponds to the angle for which s = r, hence 1 radian = 1 m/m.[28] However, rad is only to be used to express angles, not to express ratios of lengths in general.[29] A similar calculation using the area of a circular sector θ = 2A/r2 gives 1 radian as 1 m2/m2.[30] The key fact is that the radian is a dimensionless unit equal to 1. In SI 2019, the radian is defined accordingly as 1 rad = 1.[31] It is a long-established practice in mathematics and across all areas of science to make use of rad = 1.[32][33]

    Giacomo Prando writes "the current state of affairs leads inevitably to ghostly appearances and disappearances of the radian in the dimensional analysis of physical equations".[34] For example, an object hanging by a string from a pulley will rise or drop by y = centimeters, where r is the radius of the pulley in centimeters and θ is the angle the pulley turns in radians. When multiplying rbyθ the unit of radians disappears from the result. Similarly in the formula for the angular velocity of a rolling wheel, ω = v/r, radians appear in the units of ω but not on the right hand side.[35] Anthony French calls this phenomenon "a perennial problem in the teaching of mechanics".[36] Oberhofer says that the typical advice of ignoring radians during dimensional analysis and adding or removing radians in units according to convention and contextual knowledge is "pedagogically unsatisfying".[37]

    In 1993 the American Association of Physics Teachers Metric Committee specified that the radian should explicitly appear in quantities only when different numerical values would be obtained when other angle measures were used, such as in the quantities of angle measure (rad), angular speed (rad/s), angular acceleration (rad/s2), and torsional stiffness (N⋅m/rad), and not in the quantities of torque (N⋅m) and angular momentum (kg⋅m2/s).[38]

    At least a dozen scientists between 1936 and 2022 have made proposals to treat the radian as a base unit of measurement for a base quantity (and dimension) of "plane angle".[39][40][41] Quincey's review of proposals outlines two classes of proposal. The first option changes the unit of a radius to meters per radian, but this is incompatible with dimensional analysis for the area of a circle, πr2. The other option is to introduce a dimensional constant. According to Quincey this approach is "logically rigorous" compared to SI, but requires "the modification of many familiar mathematical and physical equations".[42] A dimensional constant for angle is "rather strange" and the difficulty of modifying equations to add the dimensional constant is likely to preclude widespread use.[41]

    In particular, Quincey identifies Torrens' proposal to introduce a constant η equal to 1 inverse radian (1 rad−1) in a fashion similar to the introduction of the constant ε0.[42][a] With this change the formula for the angle subtended at the center of a circle, s = , is modified to become s = ηrθ, and the Taylor series for the sine of an angle θ becomes:[41][43] where . The capitalized function Sin is the "complete" function that takes an argument with a dimension of angle and is independent of the units expressed,[43] while sinrad is the traditional function on pure numbers which assumes its argument is in radians.[44] can be denoted if it is clear that the complete form is meant.[41][45]

    Current SI can be considered relative to this framework as a natural unit system where the equation η = 1 is assumed to hold, or similarly, 1 rad = 1. This radian convention allows the omission of η in mathematical formulas.[46]

    Defining radian as a base unit may be useful for software, where the disadvantage of longer equations is minimal.[47] For example, the Boost units library defines angle units with a plane_angle dimension,[48] and Mathematica's unit system similarly considers angles to have an angle dimension.[49][50]

    Signed angles [edit]

    Measuring from the x-axis, angles on the unit circle count as positive in the counterclockwise direction, and negative in the clockwise direction.

    It is frequently helpful to impose a convention that allows positive and negative angular values to represent orientations and/or rotations in opposite directions or "sense" relative to some reference.

    In a two-dimensional Cartesian coordinate system, an angle is typically defined by its two sides, with its vertex at the origin. The initial side is on the positive x-axis, while the other side or terminal side is defined by the measure from the initial side in radians, degrees, or turns, with positive angles representing rotations toward the positive y-axis and negative angles representing rotations toward the negative y-axis. When Cartesian coordinates are represented by standard position, defined by the x-axis rightward and the y-axis upward, positive rotations are anticlockwise, and negative cycles are clockwise.

    In many contexts, an angle of −θ is effectively equivalent to an angle of "one full turn minus θ". For example, an orientation represented as −45° is effectively equal to an orientation defined as 360° − 45° or 315°. Although the final position is the same, a physical rotation (movement) of −45° is not the same as a rotation of 315° (for example, the rotation of a person holding a broom resting on a dusty floor would leave visually different traces of swept regions on the floor).

    In three-dimensional geometry, "clockwise" and "anticlockwise" have no absolute meaning, so the direction of positive and negative angles must be defined in terms of an orientation, which is typically determined by a normal vector passing through the angle's vertex and perpendicular to the plane in which the rays of the angle lie.

    Innavigation, bearingsorazimuth are measured relative to north. By convention, viewed from above, bearing angles are positive clockwise, so a bearing of 45° corresponds to a north-east orientation. Negative bearings are not used in navigation, so a north-west orientation corresponds to a bearing of 315°.

    Equivalent angles[edit]

    Related quantities[edit]

    For an angular unit, it is definitional that the angle addition postulate holds. Some quantities related to angles where the angle addition postulate does not hold include:

    Angles between curves[edit]

    The angle between the two curves at P is defined as the angle between the tangents A and BatP.

    The angle between a line and a curve (mixed angle) or between two intersecting curves (curvilinear angle) is defined to be the angle between the tangents at the point of intersection. Various names (now rarely, if ever, used) have been given to particular cases:—amphicyrtic (Gr. ἀμφί, on both sides, κυρτός, convex) or cissoidal (Gr. κισσός, ivy), biconvex; xystroidalorsistroidal (Gr. ξυστρίς, a tool for scraping), concavo-convex; amphicoelic (Gr. κοίλη, a hollow) or angulus lunularis, biconcave.[53]

    Bisecting and trisecting angles[edit]

    The ancient Greek mathematicians knew how to bisect an angle (divide it into two angles of equal measure) using only a compass and straightedge but could only trisect certain angles. In 1837, Pierre Wantzel showed that this construction could not be performed for most angles.

    Dot product and generalisations[edit]

    In the Euclidean space, the angle θ between two Euclidean vectors u and v is related to their dot product and their lengths by the formula

    This formula supplies an easy method to find the angle between two planes (or curved surfaces) from their normal vectors and between skew lines from their vector equations.

    Inner product[edit]

    To define angles in an abstract real inner product space, we replace the Euclidean dot product ( · ) by the inner product , i.e.

    In a complex inner product space, the expression for the cosine above may give non-real values, so it is replaced with

    or, more commonly, using the absolute value, with

    The latter definition ignores the direction of the vectors. It thus describes the angle between one-dimensional subspaces and spanned by the vectors and correspondingly.

    Angles between subspaces[edit]

    The definition of the angle between one-dimensional subspaces and given by

    in a Hilbert space can be extended to subspaces of finite dimensions. Given two subspaces , with , this leads to a definition of angles called canonical or principal angles between subspaces.

    Angles in Riemannian geometry[edit]

    InRiemannian geometry, the metric tensor is used to define the angle between two tangents. Where U and V are tangent vectors and gij are the components of the metric tensor G,

    Hyperbolic angle[edit]

    Ahyperbolic angle is an argument of a hyperbolic function just as the circular angle is the argument of a circular function. The comparison can be visualized as the size of the openings of a hyperbolic sector and a circular sector since the areas of these sectors correspond to the angle magnitudes in each case.[54] Unlike the circular angle, the hyperbolic angle is unbounded. When the circular and hyperbolic functions are viewed as infinite series in their angle argument, the circular ones are just alternating series forms of the hyperbolic functions. This comparison of the two series corresponding to functions of angles was described by Leonhard EulerinIntroduction to the Analysis of the Infinite (1748).

    Angles in geography and astronomy[edit]

    Ingeography, the location of any point on the Earth can be identified using a geographic coordinate system. This system specifies the latitude and longitude of any location in terms of angles subtended at the center of the Earth, using the equator and (usually) the Greenwich meridian as references.

    Inastronomy, a given point on the celestial sphere (that is, the apparent position of an astronomical object) can be identified using any of several astronomical coordinate systems, where the references vary according to the particular system. Astronomers measure the angular separation of two stars by imagining two lines through the center of the Earth, each intersecting one of the stars. The angle between those lines and the angular separation between the two stars can be measured.

    In both geography and astronomy, a sighting direction can be specified in terms of a vertical angle such as altitude /elevation with respect to the horizon as well as the azimuth with respect to north.

    Astronomers also measure objects' apparent size as an angular diameter. For example, the full moon has an angular diameter of approximately 0.5° when viewed from Earth. One could say, "The Moon's diameter subtends an angle of half a degree." The small-angle formula can convert such an angular measurement into a distance/size ratio.

    Other astronomical approximations include:

    These measurements depend on the individual subject, and the above should be treated as rough rule of thumb approximations only.

    In astronomy, right ascension and declination are usually measured in angular units, expressed in terms of time, based on a 24-hour day.

    Unit Symbol Degrees Radians Turns Other
    Hour h 15° π12 rad 124 turn
    Minute m 0°15′ π720 rad 11,440 turn 160 hour
    Second s 0°0′15 π43200 rad 186,400 turn 160 minute

    See also[edit]

  • Angles between flats
  • Angular statistics (mean, standard deviation)
  • Angle bisector
  • Angular acceleration
  • Angular diameter
  • Angular velocity
  • Argument (complex analysis)
  • Astrological aspect
  • Central angle
  • Clock angle problem
  • Decimal degrees
  • Dihedral angle
  • Exterior angle theorem
  • Golden angle
  • Great circle distance
  • Horn angle
  • Inscribed angle
  • Irrational angle
  • Phase (waves)
  • Protractor
  • Solid angle
  • Spherical angle
  • Transcendent angle
  • Trisection
  • Zenith angle
  • Notes[edit]

    1. ^ This approach requires, however, an additional proof that the measure of the angle does not change with changing radius r, in addition to the issue of "measurement units chosen". A smoother approach is to measure the angle by the length of the corresponding unit circle arc. Here "unit" can be chosen to be dimensionless in the sense that it is the real number 1 associated with the unit segment on the real line. See Radoslav M. Dimitrić, for instance.[21]
    1. ^ Other proposals include the abbreviation "rad" (Brinsmade 1936), the notation (Romain 1962), and the constants ם (Brownstein 1997), ◁ (Lévy-Leblond 1998), k (Foster 2010), θC (Quincey 2021), and (Mohr et al. 2022).

    References[edit]

  • ^ Chisholm 1911; Heiberg 1908, pp. 177–178
  • ^ Aboughantous 2010, p. 18.
  • ^ a b Moser 1971, p. 41.
  • ^ a b Godfrey & Siddons 1919, p. 9.
  • ^ Moser 1971, p. 71.
  • ^ Wong & Wong 2009, pp. 161–163
  • ^ Euclid. The Elements. Proposition I:13.
  • ^ a b Shute, Shirk & Porter 1960, pp. 25–27.
  • ^ Jacobs 1974, p. 255.
  • ^ "Complementary Angles". www.mathsisfun.com. Retrieved 2020-08-17.
  • ^ a b Chisholm 1911
  • ^ "Supplementary Angles". www.mathsisfun.com. Retrieved 2020-08-17.
  • ^ Jacobs 1974, p. 97.
  • ^ Willis, Clarence Addison (1922). Plane Geometry. Blakiston's Son. p. 8.
  • ^ Henderson & Taimina 2005, p. 104.
  • ^ a b c Johnson, Roger A. Advanced Euclidean Geometry, Dover Publications, 2007.
  • ^ D. Zwillinger, ed. (1995), CRC Standard Mathematical Tables and Formulae, Boca Raton, FL: CRC Press, p. 270 as cited in Weisstein, Eric W. "Exterior Angle". MathWorld.
  • ^ International Bureau of Weights and Measures (20 May 2019), The International System of Units (SI) (PDF) (9th ed.), ISBN 978-92-822-2272-0, archived from the original on 18 October 2021
  • ^ Dimitrić, Radoslav M. (2012). "On Angles and Angle Measurements" (PDF). The Teaching of Mathematics. XV (2): 133–140. Archived (PDF) from the original on 2019-01-17. Retrieved 2019-08-06.
  • ^ "angular unit". TheFreeDictionary.com. Retrieved 2020-08-31.
  • ^ a b "ooPIC Programmer's Guide - Chapter 15: URCP". ooPIC Manual & Technical Specifications - ooPIC Compiler Ver 6.0. Savage Innovations, LLC. 2007 [1997]. Archived from the original on 2008-06-28. Retrieved 2019-08-05.
  • ^ Hargreaves, Shawn [in Polish]. "Angles, integers, and modulo arithmetic". blogs.msdn.com. Archived from the original on 2019-06-30. Retrieved 2019-08-05.
  • ^ Bonin, Walter (2016-01-11). "RE: WP-32S in 2016?". HP Museum. Archived from the original on 2019-08-06. Retrieved 2019-08-05.
  • ^ Jeans, James Hopwood (1947). The Growth of Physical Science. CUP Archive. p. 7.
  • ^ Murnaghan, Francis Dominic (1946). Analytic Geometry. p. 2.
  • ^ International Bureau of Weights and Measures 2019, p. 151: "One radian corresponds to the angle for which s = r"
  • ^ International Bureau of Weights and Measures 2019, p. 151.
  • ^ Quincey 2016, p. 844: "Also, as alluded to in Mohr & Phillips 2015, the radian can be defined in terms of the area A of a sector (A = 1/2 θ r2), in which case it has the units m2⋅m−2."
  • ^ International Bureau of Weights and Measures 2019, p. 151: "One radian corresponds to the angle for which s = r, thus 1 rad = 1."
  • ^ International Bureau of Weights and Measures 2019, p. 137.
  • ^ Bridgman, Percy Williams (1922). Dimensional analysis. New Haven : Yale University Press. Angular amplitude of swing [...] No dimensions.
  • ^ Prando, Giacomo (August 2020). "A spectral unit". Nature Physics. 16 (8): 888. Bibcode:2020NatPh..16..888P. doi:10.1038/s41567-020-0997-3. S2CID 225445454.
  • ^ Leonard, William J. (1999). Minds-on Physics: Advanced topics in mechanics. Kendall Hunt. p. 262. ISBN 978-0-7872-5412-4.
  • ^ French, Anthony P. (May 1992). "What happens to the 'radians'? (comment)". The Physics Teacher. 30 (5): 260–261. doi:10.1119/1.2343535.
  • ^ Oberhofer, E. S. (March 1992). "What happens to the 'radians'?". The Physics Teacher. 30 (3): 170–171. Bibcode:1992PhTea..30..170O. doi:10.1119/1.2343500.
  • ^ Aubrecht, Gordon J.; French, Anthony P.; Iona, Mario; Welch, Daniel W. (February 1993). "The radian—That troublesome unit". The Physics Teacher. 31 (2): 84–87. Bibcode:1993PhTea..31...84A. doi:10.1119/1.2343667.
  • ^ Brinsmade 1936; Romain 1962; Eder 1982; Torrens 1986; Brownstein 1997; Lévy-Leblond 1998; Foster 2010; Mills 2016; Quincey 2021; Leonard 2021; Mohr et al. 2022
  • ^ Mohr & Phillips 2015.
  • ^ a b c d Quincey, Paul; Brown, Richard J C (1 June 2016). "Implications of adopting plane angle as a base quantity in the SI". Metrologia. 53 (3): 998–1002. arXiv:1604.02373. Bibcode:2016Metro..53..998Q. doi:10.1088/0026-1394/53/3/998. S2CID 119294905.
  • ^ a b Quincey 2016.
  • ^ a b Torrens 1986.
  • ^ Mohr et al. 2022, p. 6.
  • ^ Mohr et al. 2022, pp. 8–9.
  • ^ Quincey 2021.
  • ^ Quincey, Paul; Brown, Richard J C (1 August 2017). "A clearer approach for defining unit systems". Metrologia. 54 (4): 454–460. arXiv:1705.03765. Bibcode:2017Metro..54..454Q. doi:10.1088/1681-7575/aa7160. S2CID 119418270.
  • ^ Schabel, Matthias C.; Watanabe, Steven. "Boost.Units FAQ – 1.79.0". www.boost.org. Retrieved 5 May 2022. Angles are treated as units
  • ^ Mohr et al. 2022, p. 3.
  • ^ "UnityDimensions—Wolfram Language Documentation". reference.wolfram.com. Retrieved 1 July 2022.
  • ^ "Mathwords: Reference Angle". www.mathwords.com. Archived from the original on 23 October 2017. Retrieved 26 April 2018.
  • ^ McKeague, Charles P. (2008). Trigonometry (6th ed.). Belmont, CA: Thomson Brooks/Cole. p. 110. ISBN 978-0495382607.
  • ^ Chisholm 1911; Heiberg 1908, p. 178
  • ^ Robert Baldwin Hayward (1892) The Algebra of Coplanar Vectors and Trigonometry, chapter six
  • Bibliography[edit]

     This article incorporates text from a publication now in the public domainChisholm, Hugh, ed. (1911), "Angle", Encyclopædia Britannica, vol. 2 (11th ed.), Cambridge University Press, p. 14

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Angle&oldid=1230447300"

    Category: 
    Angle
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Articles containing Latin-language text
    Articles containing Ancient Greek (to 1453)-language text
    Articles with excerpts
    Wikipedia articles incorporating a citation from the 1911 Encyclopaedia Britannica with Wikisource reference
    Wikipedia articles incorporating text from the 1911 Encyclopædia Britannica
    Commons category link is on Wikidata
    Wikipedia articles incorporating a citation from EB9
    Articles with BNF identifiers
    Articles with BNFdata identifiers
    Articles with GND identifiers
    Articles with J9U identifiers
    Articles with LCCN identifiers
     



    This page was last edited on 22 June 2024, at 19:14 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki