Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Units  





2 Examples  



2.1  Circular motion  





2.2  Oscillations of a spring  





2.3  LC circuits  







3 Terminology  





4 See also  





5 References and notes  














Angular frequency






Afrikaans
العربية

Беларуская
Български
Català
Чӑвашла
Čeština
Deutsch
Eesti
Ελληνικά
Esperanto
فارسی
Français

Հայերեն
ि
Hrvatski
Bahasa Indonesia
עברית

Latviešu
Lietuvių
Magyar
Македонски
Bahasa Melayu
Nederlands

Norsk bokmål
Norsk nynorsk
Oʻzbekcha / ўзбекча
Polski
Português
Русский
Shqip
Simple English
Slovenščina
Suomi
ி
Татарча / tatarça


Türkçe
Українська
اردو
Tiếng Vit


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Angular rate)

Angular frequency

Angular speed ω, is greater than rotational frequency ν, by a factor of 2π.

Other names

angular speed, angular rate

Common symbols

ω

SI unit

radian per second (rad/s)

Other units

degrees per second (°/s)

InSI base units

s−1

Derivations from
other quantities

ω=2π rad ⋅ ν, ω=dθ/dt

Dimension

A sphere rotating around an axis. Points farther from the axis move faster, satisfying ω = v / r.

Inphysics, angular frequency (symbol ω), also called angular speed and angular rate, is a scalar measure of the angle rate (the angle per unit time) or the temporal rate of change of the phase argument of a sinusoidal waveformorsine function (for example, in oscillations and waves). Angular frequency (or angular speed) is the magnitude of the pseudovector quantity angular velocity.[1]

Angular frequency can be obtained multiplying rotational frequency, ν (or ordinary frequency, f) by a full turn (2π radians): ω = 2π rad⋅ν. It can also be formulated as ω = dθ/dt, the instantaneous rate of change of the angular displacement, θ, with respect to time, t.[2][3]

Units[edit]

InSI units, angular frequency is normally presented in the unit radian per second. The unit hertz (Hz) is dimensionally equivalent, but by convention it is only used for frequency f, never for angular frequency ω. This convention is used to help avoid the confusion[4] that arises when dealing with quantities such as frequency and angular quantities because the units of measure (such as cycle or radian) are considered to be one and hence may be omitted when expressing quantities in terms of SI units.[5][6]

Indigital signal processing, the frequency may be normalized by the sampling rate, yielding the normalized frequency.

Examples[edit]

Circular motion[edit]

In a rotating or orbiting object, there is a relation between distance from the axis, , tangential speed, , and the angular frequency of the rotation. During one period, , a body in circular motion travels a distance . This distance is also equal to the circumference of the path traced out by the body, . Setting these two quantities equal, and recalling the link between period and angular frequency we obtain: Circular motion on the unit circle is given by where:

Oscillations of a spring[edit]

Part of a series on

Classical mechanics

  • Timeline
  • Textbooks
  • Continuum
  • Dynamics
  • Kinematics
  • Kinetics
  • Statics
  • Statistical mechanics
  • Couple
  • D'Alembert's principle
  • Energy
  • Force
  • Frame of reference
  • Inertial frame of reference
  • Impulse
  • Inertia / Moment of inertia
  • Mass

  • Mechanical power
  • Mechanical work

  • Moment
  • Momentum
  • Space
  • Speed
  • Time
  • Torque
  • Velocity
  • Virtual work
  • Analytical mechanics
  • Hamiltonian mechanics
  • Routhian mechanics
  • Hamilton–Jacobi equation
  • Appell's equation of motion
  • Koopman–von Neumann mechanics
  • Equations of motion
  • Euler's laws of motion
  • Fictitious force
  • Friction
  • Harmonic oscillator
  • Newton's law of universal gravitation
  • Newton's laws of motion
  • Relative velocity
  • Rigid body
  • Simple harmonic motion
  • Vibration
  • Centripetal force
  • Centrifugal force
  • Coriolis force
  • Pendulum
  • Tangential speed
  • Rotational frequency
  • Huygens
  • Newton
  • Horrocks
  • Halley
  • Maupertuis
  • Daniel Bernoulli
  • Johann Bernoulli
  • Euler
  • d'Alembert
  • Clairaut
  • Lagrange
  • Laplace
  • Poisson
  • Hamilton
  • Jacobi
  • Cauchy
  • Routh
  • Liouville
  • Appell
  • Gibbs
  • Koopman
  • von Neumann
  •  Category
  • t
  • e
  • An object attached to a spring can oscillate. If the spring is assumed to be ideal and massless with no damping, then the motion is simple and harmonic with an angular frequency given by[7] where

    ω is referred to as the natural angular frequency (sometimes be denoted as ω0).

    As the object oscillates, its acceleration can be calculated by where x is displacement from an equilibrium position.

    Using standard frequency f, this equation would be

    LC circuits[edit]

    The resonant angular frequency in a series LC circuit equals the square root of the reciprocal of the product of the capacitance (C, with SI unit farad) and the inductance of the circuit (L, with SI unit henry):[8]

    Adding series resistance (for example, due to the resistance of the wire in a coil) does not change the resonant frequency of the series LC circuit. For a parallel tuned circuit, the above equation is often a useful approximation, but the resonant frequency does depend on the losses of parallel elements.

    Terminology[edit]

    Although angular frequency is often loosely referred to as frequency, it differs from frequency by a factor of 2π, which potentially leads confusion when the distinction is not made clear.

    See also[edit]

    References and notes[edit]

    1. ^ Cummings, Karen; Halliday, David (2007). Understanding physics. New Delhi: John Wiley & Sons, authorized reprint to Wiley – India. pp. 449, 484, 485, 487. ISBN 978-81-265-0882-2.(UP1)
  • ^ "ISO 80000-3:2019 Quantities and units — Part 3: Space and time" (2 ed.). International Organization for Standardization. 2019. Retrieved 2019-10-23. [1] (11 pages)
  • ^ Holzner, Steven (2006). Physics for Dummies. Hoboken, New Jersey: Wiley Publishing. pp. 201. ISBN 978-0-7645-5433-9. angular frequency.
  • ^ Lerner, Lawrence S. (1996-01-01). Physics for scientists and engineers. p. 145. ISBN 978-0-86720-479-7.
  • ^ Mohr, J. C.; Phillips, W. D. (2015). "Dimensionless Units in the SI". Metrologia. 52 (1): 40–47. arXiv:1409.2794. Bibcode:2015Metro..52...40M. doi:10.1088/0026-1394/52/1/40. S2CID 3328342.
  • ^ "SI units need reform to avoid confusion". Editorial. Nature. 548 (7666): 135. 7 August 2011. doi:10.1038/548135b. PMID 28796224.
  • ^ Serway, Raymond A.; Jewett, John W. (2006). Principles of physics (4th ed.). Belmont, CA: Brooks / Cole – Thomson Learning. pp. 375, 376, 385, 397. ISBN 978-0-534-46479-0.
  • ^ Nahvi, Mahmood; Edminister, Joseph (2003). Schaum's outline of theory and problems of electric circuits. McGraw-Hill Companies (McGraw-Hill Professional). pp. 214, 216. ISBN 0-07-139307-2. (LC1)
  • Related Reading:


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Angular_frequency&oldid=1231129903"

    Categories: 
    Angle
    Kinematic properties
    Frequency
    Quotients
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
     



    This page was last edited on 26 June 2024, at 16:50 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki