Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definition  





2 Simple series  





3 The q-binomial theorem  



3.1  Cauchy binomial theorem  







4 Ramanujan's identity  





5 Watson's contour integral  





6 Matrix version  





7 See also  





8 Notes  





9 References  





10 External links  














Basic hypergeometric series






Español
Français
Italiano

Română

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Basic hypergeometric function)

Inmathematics, basic hypergeometric series, or q-hypergeometric series, are q-analogue generalizations of generalized hypergeometric series, and are in turn generalized by elliptic hypergeometric series. A series xn is called hypergeometric if the ratio of successive terms xn+1/xn is a rational functionofn. If the ratio of successive terms is a rational function of qn, then the series is called a basic hypergeometric series. The number q is called the base.

The basic hypergeometric series was first considered by Eduard Heine (1846). It becomes the hypergeometric series in the limit when base .

Definition

[edit]

There are two forms of basic hypergeometric series, the unilateral basic hypergeometric series φ, and the more general bilateral basic hypergeometric series ψ. The unilateral basic hypergeometric series is defined as

where

and

is the q-shifted factorial. The most important special case is when j = k + 1, when it becomes

This series is called balancedifa1 ... ak + 1 = b1 ...bkq. This series is called well poisedifa1q = a2b1 = ... = ak + 1bk, and very well poised if in addition a2 = −a3 = qa11/2. The unilateral basic hypergeometric series is a q-analog of the hypergeometric series since

holds (Koekoek & Swarttouw (1996)).
The bilateral basic hypergeometric series, corresponding to the bilateral hypergeometric series, is defined as

The most important special case is when j = k, when it becomes

The unilateral series can be obtained as a special case of the bilateral one by setting one of the b variables equal to q, at least when none of the a variables is a power of q, as all the terms with n < 0 then vanish.

Simple series

[edit]

Some simple series expressions include

and

and

The q-binomial theorem

[edit]

The q-binomial theorem (first published in 1811 by Heinrich August Rothe)[1][2] states that

which follows by repeatedly applying the identity

The special case of a = 0 is closely related to the q-exponential.

Cauchy binomial theorem

[edit]

Cauchy binomial theorem is a special case of the q-binomial theorem.[3]

Ramanujan's identity

[edit]

Srinivasa Ramanujan gave the identity

valid for |q| < 1 and |b/a| < |z| < 1. Similar identities for have been given by Bailey. Such identities can be understood to be generalizations of the Jacobi triple product theorem, which can be written using q-series as

Ken Ono gives a related formal power series[4]

Watson's contour integral

[edit]

As an analogue of the Barnes integral for the hypergeometric series, Watson showed that

where the poles of lie to the left of the contour and the remaining poles lie to the right. There is a similar contour integral for r+1φr. This contour integral gives an analytic continuation of the basic hypergeometric function in z.

Matrix version

[edit]

The basic hypergeometric matrix function can be defined as follows:

The ratio test shows that this matrix function is absolutely convergent.[5]

See also

[edit]

Notes

[edit]
  1. ^ Bressoud, D. M. (1981), "Some identities for terminating q-series", Mathematical Proceedings of the Cambridge Philosophical Society, 89 (2): 211–223, Bibcode:1981MPCPS..89..211B, doi:10.1017/S0305004100058114, MR 0600238.
  • ^ Benaoum, H. B. (1998), "h-analogue of Newton's binomial formula", Journal of Physics A: Mathematical and General, 31 (46): L751–L754, arXiv:math-ph/9812011, Bibcode:1998JPhA...31L.751B, doi:10.1088/0305-4470/31/46/001, S2CID 119697596.
  • ^ Wolfram Mathworld: Cauchy Binomial Theorem
  • ^ Gwynneth H. Coogan and Ken Ono, A q-series identity and the Arithmetic of Hurwitz Zeta Functions, (2003) Proceedings of the American Mathematical Society 131, pp. 719–724
  • ^ Ahmed Salem (2014) The basic Gauss hypergeometric matrix function and its matrix q-difference equation, Linear and Multilinear Algebra, 62:3, 347-361, DOI: 10.1080/03081087.2013.777437
  • References

    [edit]
    [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Basic_hypergeometric_series&oldid=1168739844"

    Categories: 
    Q-analogs
    Hypergeometric functions
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
     



    This page was last edited on 4 August 2023, at 18:08 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki