Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Preparation and chemical properties  





2 Structure  





3 Applications  





4 Safety  





5 References  





6 Cited sources  





7 External links  














Beryllium oxide






العربية
تۆرکجه

Čeština
Dansk
Deutsch
Ελληνικά
Español
Esperanto
فارسی
Français

ि
Italiano

Кыргызча
Magyar
Bahasa Melayu
Nederlands

Oʻzbekcha / ўзбекча
Polski
Português
Română
Русский
Slovenščina
Српски / srpski
Srpskohrvatski / српскохрватски
Suomi
Svenska
ி

Türkçe
Українська
Tiếng Vit



 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Beryllia)

Beryllium oxide
Unit cell, ball and stick model of beryllium oxide
Names
Preferred IUPAC name

Beryllium(II) monoxide

Systematic IUPAC name

Oxoberyllium

Other names

Beryllia, Thermalox, Bromellite, Thermalox 995.[1]

Identifiers

CAS Number

3D model (JSmol)

  • Interactive image
  • Beilstein Reference

    3902801
    ChEBI
    ChemSpider
    ECHA InfoCard 100.013.758 Edit this at Wikidata
    EC Number
    • 215-133-1
    MeSH beryllium+oxide

    PubChem CID

    RTECS number
    • DS4025000
    UNII
    UN number 1566

    CompTox Dashboard (EPA)

    • InChI=1S/Be.O checkY

      Key: LTPBRCUWZOMYOC-UHFFFAOYSA-N checkY

    • InChI=1/Be.O/rBeO/c1-2

      Key: LTPBRCUWZOMYOC-SRAGPBHZAE

    • [Be]=[O]

    • [Be-]#[O+]

    Properties

    Chemical formula

    BeO
    Molar mass 25.011 g·mol−1
    Appearance Colourless, vitreous crystals
    Odor Odourless
    Density 3.01 g/cm3[2]
    Melting point 2,578 °C (4,672 °F; 2,851 K)[2]
    Band gap 10.6 eV[3]

    Magnetic susceptibility (χ)

    −11.9·10−6cm3/mol[4]
    Thermal conductivity 210 W/(m·K)[5]

    Refractive index (nD)

    n11.7184, n2=1.733[6][7]
    Structure[8]

    Crystal structure

    Hexagonal, zincite

    Space group

    P63mc

    Point group

    C6v

    Lattice constant

    a = 2.6979 Å, c = 4.3772 Å

    Formula units (Z)

    2

    Molecular shape

    Linear
    Thermochemistry[9]

    Heat capacity (C)

    25.6 J/(K·mol)

    Std molar
    entropy
    (S298)

    13.77±0.04 J/(K·mol)

    Std enthalpy of
    formation
    fH298)

    −609.4±2.5 kJ/mol

    Gibbs free energy fG)

    −580.1 kJ/mol

    Enthalpy of fusion fHfus)

    86 kJ/mol
    Hazards
    Occupational safety and health (OHS/OSH):

    Main hazards

    Very toxic, Group 1B carcinogen
    GHS labelling:

    Pictograms

    GHS06: Toxic GHS08: Health hazardGHS09: Environmental hazard

    Signal word

    Danger

    Hazard statements

    H301, H315, H317, H319, H330, H335, H350, H372

    Precautionary statements

    P201, P260, P280, P284, P301+P310, P305+P351+P338
    NFPA 704 (fire diamond)
    NFPA 704 four-colored diamondHealth 4: Very short exposure could cause death or major residual injury. E.g. VX gasFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
    4
    0
    0
    Lethal dose or concentration (LD, LC):

    LD50 (median dose)

    15 mg/kg (mouse, oral)[11]
    NIOSH (US health exposure limits):

    PEL (Permissible)

    TWA 0.002 mg/m3
    C 0.005 mg/m3 (30 minutes), with a maximum peak of 0.025 mg/m3 (as Be)[10]

    REL (Recommended)

    Ca C 0.0005 mg/m3 (as Be)[10]

    IDLH (Immediate danger)

    Ca [4 mg/m3 (as Be)][10]
    Related compounds

    Other anions

    Beryllium telluride

    Other cations

  • Calcium oxide
  • Strontium oxide
  • Barium oxide
  • Supplementary data page
    Beryllium oxide (data page)

    Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

    ☒N verify (what is checkY☒N ?)

    Infobox references

    Beryllium oxide (BeO), also known as beryllia, is an inorganic compound with the formula BeO. This colourless solid is a electrical insulator with a higher thermal conductivity than any other non-metal except diamond, and exceeds that of most metals.[12] As an amorphous solid, beryllium oxide is white. Its high melting point leads to its use as a refractory material.[13] It occurs in nature as the mineral bromellite. Historically and in materials science, beryllium oxide was called glucinaorglucinium oxide, owing to its sweet taste.

    Preparation and chemical properties[edit]

    Beryllium oxide can be prepared by calcining (roasting) beryllium carbonate, dehydrating beryllium hydroxide, or igniting metallic beryllium:

    BeCO3 → BeO + CO2
    Be(OH)2 → BeO + H2O
    2 Be + O2 → 2 BeO

    Igniting beryllium in air gives a mixture of BeO and the nitride Be3N2.[12] Unlike the oxides formed by the other Group 2 elements (alkaline earth metals), beryllium oxide is amphoteric rather than basic.

    Beryllium oxide formed at high temperatures (>800 °C) is inert, but dissolves easily in hot aqueous ammonium bifluoride (NH4HF2) or a solution of hot concentrated sulfuric acid (H2SO4) and ammonium sulfate ((NH4)2SO4).

    Structure[edit]

    BeO crystallizes in the hexagonal wurtzite structure, featuring tetrahedral Be2+ and O2− centres, like lonsdaleite and w-BN (with both of which it is isoelectronic). In contrast, the oxides of the larger group-2 metals, i.e., MgO, CaO, SrO, BaO, crystallize in the cubic rock salt motif with octahedral geometry about the dications and dianions.[12] At high temperature the structure transforms to a tetragonal form.[14]

    In the vapour phase, beryllium oxide is present as discrete diatomic molecules. In the language of valence bond theory, these molecules can be described as adopting sp orbital hybridisation on both atoms, featuring one σ bond (between one sp orbital on each atom) and one π bond (between aligned p orbitals on each atom oriented perpendicular to the molecular axis). Molecular orbital theory provides a slightly different picture with no net σ bonding (because the 2s orbitals of the two atoms combine to form a filled sigma bonding orbital and a filled sigma* anti-bonding orbital) and two π bonds formed between both pairs of p orbitals oriented perpendicular to the molecular axis. The sigma orbital formed by the p orbitals aligned along the molecular axis is unfilled. The corresponding ground state is ...(2sσ)2(2sσ*)2(2pπ)4 (as in the isoelectronic C2 molecule), where both bonds can be considered as dative bonds from oxygen towards beryllium.[15]

    Applications[edit]

    High-quality crystals may be grown hydrothermally, or otherwise by the Verneuil method. For the most part, beryllium oxide is produced as a white amorphous powder, sintered into larger shapes. Impurities, like carbon, can give rise to a variety of colours to the otherwise colourless host crystals.

    Sintered beryllium oxide is a very stable ceramic.[16] Beryllium oxide is used in rocket engines[citation needed] and as a transparent protective over-coatingonaluminised telescope mirrors.

    Beryllium oxide is used in many high-performance semiconductor parts for applications such as radio equipment because it has good thermal conductivity while also being a good electrical insulator. It is used as a filler in some thermal interface materials such as thermal grease.[17] Some power semiconductor devices have used beryllium oxide ceramic between the silicon chip and the metal mounting base of the package to achieve a lower value of thermal resistance than a similar construction of aluminium oxide. It is also used as a structural ceramic for high-performance microwave devices, vacuum tubes, cavity magnetrons, and gas lasers. BeO has been proposed as a neutron moderator for naval marine high-temperature gas-cooled reactors (MGCR), as well as NASA's Kilopower nuclear reactor for space applications.[18]

    Safety[edit]

    BeO is carcinogenic in powdered form[19] and may cause a chronic allergic-type lung disease berylliosis. Once fired into solid form, it is safe to handle if not subjected to machining that generates dust. Clean breakage releases little dust, but crushing or grinding actions can pose a risk.[20]

    References[edit]

    1. ^ "beryllium oxide – Compound Summary". PubChem Compound. USA: National Center for Biotechnology Information. 27 March 2005. Identification and Related records. Retrieved 8 November 2011.
  • ^ a b Haynes, p. 4.51
  • ^ Ryu, Y. R.; Lee, T. S.; Lubguban, J. A.; Corman, A. B.; White, H. W.; Leem, J. H.; Han, M. S.; Park, Y. S.; Youn, C. J.; Kim, W. J. (2006). "Wide-band gap oxide alloy: BeZnO". Applied Physics Letters. 88 (5): 052103. Bibcode:2006ApPhL..88e2103R. doi:10.1063/1.2168040.
  • ^ Haynes, p. 4.126
  • ^ Haynes, p. 12.222
  • ^ Haynes, p. 10.248
  • ^ Bromellite Mineral Data. webmineral
  • ^ Haynes, p. 4.139
  • ^ Haynes, pp. 5.1, 5.6, 6.155
  • ^ a b c NIOSH Pocket Guide to Chemical Hazards. "#0054". National Institute for Occupational Safety and Health (NIOSH).
  • ^ Beryllium oxide toxicity
  • ^ a b c Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  • ^ Higgins, Raymond Aurelius (2006). Materials for Engineers and Technicians. Newnes. p. 301. ISBN 0-7506-6850-4.
  • ^ Wells, A. F. (1984). Structural Inorganic Chemistry (5 ed.). Oxford Science Publications. ISBN 0-19-855370-6.
  • ^ Fundamentals of Spectroscopy. Allied Publishers. p. 234. ISBN 978-81-7023-911-6. Retrieved 29 November 2011.
  • ^ Petzow, Günter; Aldinger, Fritz; Jönsson, Sigurd; Welge, Peter; van Kampen, Vera; Mensing, Thomas; Brüning, Thomas (2005) "Beryllium and Beryllium Compounds" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim. doi:10.1002/14356007.a04_011.pub2
  • ^ Greg Becker; Chris Lee; Zuchen Lin (2005). "Thermal conductivity in advanced chips — Emerging generation of thermal greases offers advantages". Advanced Packaging: 2–4. Archived from the original on June 21, 2000. Retrieved 2008-03-04.
  • ^ McClure, Patrick; Poston, David; Gibson, Marc; Bowman, Cheryl; Creasy, John (14 May 2014). "KiloPower Space Reactor Concept – Reactor Materials Study". Retrieved 21 November 2017.
  • ^ "Hazardous Substance Fact Sheet" (PDF). New Jersey Department of Health and Senior Services. Retrieved August 17, 2018.
  • ^ "Beryllium Oxide Safety". American Beryllia. Retrieved 2018-03-29.
  • Cited sources[edit]

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Beryllium_oxide&oldid=1231866935"

    Categories: 
    Beryllium compounds
    Oxides
    IARC Group 1 carcinogens
    Ceramic materials
    Nuclear technology
    II-VI semiconductors
    Wurtzite structure type
    Hidden categories: 
    Chemical articles with multiple compound IDs
    Multiple chemicals in an infobox that need indexing
    Articles without KEGG source
    Articles with changed EBI identifier
    ECHA InfoCard ID from Wikidata
    Chembox having GHS data
    Chemical articles having a data page
    Articles containing unverified chemical infoboxes
    Articles with short description
    Short description matches Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from September 2023
    Articles with GND identifiers
     



    This page was last edited on 30 June 2024, at 18:09 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki