Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definition  





2 Relation to the aleph numbers  





3 Specific cardinals  



3.1  Beth null  





3.2  Beth one  





3.3  Beth two  





3.4  Beth omega  







4 Generalization  





5 Borel determinacy  





6 See also  





7 References  





8 Bibliography  














Beth number






Čeština
Deutsch
Français

Italiano
עברית
Македонски
Nederlands

Polski
Русский
Slovenščina

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Beth two)

Inmathematics, particularly in set theory, the beth numbers are a certain sequence of infinite cardinal numbers (also known as transfinite numbers), conventionally written , where is the Hebrew letter beth. The beth numbers are related to the aleph numbers (), but unless the generalized continuum hypothesis is true, there are numbers indexed by that are not indexed by .

Definition

[edit]

Beth numbers are defined by transfinite recursion:

where is an ordinal and is a limit ordinal.[1]

The cardinal is the cardinality of any countably infinite set such as the set ofnatural numbers, so that .

Let be an ordinal, and be a set with cardinality . Then,

Given this definition,

are respectively the cardinalities of

so that the second beth number is equal to , the cardinality of the continuum (the cardinality of the set of the real numbers), and the third beth number is the cardinality of the power set of the continuum.

Because of Cantor's theorem, each set in the preceding sequence has cardinality strictly greater than the one preceding it. For infinite limit ordinals , the corresponding beth number is defined to be the supremum of the beth numbers for all ordinals strictly smaller than :

One can show that this definition is equivalent to

For instance:

This equivalence can be shown by seeing that:

Note that this behavior is different from that of successor ordinals. Cardinalities less than but greater than any can exist when is a successor ordinal (in that case, the existence is undecidable in ZFC and controlled by the Generalized Continuum Hypothesis); but cannot exist when is a limit ordinal, even under the second definition presented.

One can also show that the von Neumann universes have cardinality .

Relation to the aleph numbers

[edit]

Assuming the axiom of choice, infinite cardinalities are linearly ordered; no two cardinalities can fail to be comparable. Thus, since by definition no infinite cardinalities are between and , it follows that

Repeating this argument (see transfinite induction) yields for all ordinals .

The continuum hypothesis is equivalent to

The generalized continuum hypothesis says the sequence of beth numbers thus defined is the same as the sequence of aleph numbers, i.e., for all ordinals .

Specific cardinals

[edit]

Beth null

[edit]

Since this is defined to be , or aleph null, sets with cardinality include:

Beth one

[edit]

Sets with cardinality include:

Beth two

[edit]

(pronounced beth two) is also referred to as (pronounced two to the power of ).

Sets with cardinality include:

Beth omega

[edit]

(pronounced beth omega) is the smallest uncountable strong limit cardinal.

Generalization

[edit]

The more general symbol , for ordinals and cardinals , is occasionally used. It is defined by:

ifλ is a limit ordinal.

So

InZermelo–Fraenkel set theory (ZF), for any cardinals and , there is an ordinal such that:

And in ZF, for any cardinal and ordinals and :

Consequently, in ZF absent ur-elements, with or without the axiom of choice, for any cardinals and , the equality

holds for all sufficiently large ordinals . That is, there is an ordinal such that the equality holds for every ordinal .

This also holds in Zermelo–Fraenkel set theory with ur-elements (with or without the axiom of choice), provided that the ur-elements form a set which is equinumerous with a pure set (a set whose transitive closure contains no ur-elements). If the axiom of choice holds, then any set of ur-elements is equinumerous with a pure set.

Borel determinacy

[edit]

Borel determinacy is implied by the existence of all beths of countable index.[5]

See also

[edit]

References

[edit]
  1. ^ Jech, Thomas (2002). Set Theory (3rd ed.). Springer. p. 55. ISBN 978-3-540-44085-7. Millennium ed, rev. and expanded. Corrected 4th printing 2006.
  • ^ a b Soltanifar, Mohsen (2023). "A classification of elements of function space F(R,R)". Mathematics. 11 (17): 3715. arXiv:2308.06297. doi:10.3390/math11173715.
  • ^ Soltanifar, Mohsen (2021). "A generalization of the Hausdorff dimension theorem for deterministic fractals". Mathematics. 9 (13): 1546. arXiv:2007.07991. doi:10.3390/math9131546.
  • ^ Soltanifar, Mohsen (2022). "The second generalization of the Hausdorff dimension theorem for random fractals". Mathematics. 10 (5): 706. doi:10.3390/math10050706. hdl:1807/110291.
  • ^ Leinster, Tom (23 July 2021). "Borel Determinacy Does Not Require Replacement". The n-Category Café. The University of Texas at Austin. Retrieved 25 August 2021.
  • Bibliography

    [edit]
  • Bell, John Lane; Slomson, Alan B. (2006) [1969]. Models and Ultraproducts: An Introduction (reprint of 1974 ed.). Dover Publications. ISBN 0-486-44979-3. See pages 6 and 204–205 for beth numbers.
  • Roitman, Judith (2011). Introduction to Modern Set Theory. Virginia Commonwealth University. ISBN 978-0-9824062-4-3. See page 109 for beth numbers.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Beth_number&oldid=1229859917#Beth_two"

    Categories: 
    Cardinal numbers
    Infinity
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
     



    This page was last edited on 19 June 2024, at 02:51 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki