Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Examples  





2 Properties  





3 Modules over a Bézout domain  





4 See also  





5 References  





6 Bibliography  














Bézout domain






Čeština
Français

Italiano
עברית

Oʻzbekcha / ўзбекча
Русский
Українська
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Bezout domain)

Inmathematics, a Bézout domain is a form of a Prüfer domain. It is an integral domain in which the sum of two principal ideals is again a principal ideal. This means that for every pair of elements a Bézout identity holds, and that every finitely generated ideal is principal. Any principal ideal domain (PID) is a Bézout domain, but a Bézout domain need not be a Noetherian ring, so it could have non-finitely generated ideals (which obviously excludes being a PID); if so, it is not a unique factorization domain (UFD), but still is a GCD domain. The theory of Bézout domains retains many of the properties of PIDs, without requiring the Noetherian property. Bézout domains are named after the French mathematician Étienne Bézout.

Examples[edit]

  1. It suffices to prove that for every pair a, binS there exist s, tinS such that as + bt divides both a and b.
  2. Ifa and b have a common divisor d, it suffices to prove this for a/d and b/d, since the same s, t will do.
  3. We may assume the polynomials a and b nonzero; if both have a zero constant term, then let n be the minimal exponent such that at least one of them has a nonzero coefficient of Xn; one can find finF such that fXn is a common divisor of a and b and divide by it.
  4. We may therefore assume at least one of a, b has a nonzero constant term. If a and b viewed as elements of F[X] are not relatively prime, there is a greatest common divisor of a and b in this UFD that has constant term 1, and therefore lies in S; we can divide by this factor.
  5. We may therefore also assume that a and b are relatively prime in F[X], so that 1 lies in aF[X] + bF[X], and some constant polynomial rinR lies in aS + bS. Also, since R is a Bézout domain, the gcd dinR of the constant terms a0 and b0 lies in a0R + b0R. Since any element without constant term, like aa0orbb0, is divisible by any nonzero constant, the constant d is a common divisor in Sofa and b; we shall show it is in fact a greatest common divisor by showing that it lies in aS + bS. Multiplying a and b respectively by the Bézout coefficients for d with respect to a0 and b0 gives a polynomial pinaS + bS with constant term d. Then pd has a zero constant term, and so is a multiple in S of the constant polynomial r, and therefore lies in aS + bS. But then d does as well, which completes the proof.

Properties[edit]

A ring is a Bézout domain if and only if it is an integral domain in which any two elements have a greatest common divisor that is a linear combination of them: this is equivalent to the statement that an ideal which is generated by two elements is also generated by a single element, and induction demonstrates that all finitely generated ideals are principal. The expression of the greatest common divisor of two elements of a PID as a linear combination is often called Bézout's identity, whence the terminology.

Note that the above gcd condition is stronger than the mere existence of a gcd. An integral domain where a gcd exists for any two elements is called a GCD domain and thus Bézout domains are GCD domains. In particular, in a Bézout domain, irreducibles are prime (but as the algebraic integer example shows, they need not exist).

For a Bézout domain R, the following conditions are all equivalent:

  1. R is a principal ideal domain.
  2. R is Noetherian.
  3. R is a unique factorization domain (UFD).
  4. R satisfies the ascending chain condition on principal ideals (ACCP).
  5. Every nonzero nonunit in R factors into a product of irreducibles (R is an atomic domain).

The equivalence of (1) and (2) was noted above. Since a Bézout domain is a GCD domain, it follows immediately that (3), (4) and (5) are equivalent. Finally, if R is not Noetherian, then there exists an infinite ascending chain of finitely generated ideals, so in a Bézout domain an infinite ascending chain of principal ideals. (4) and (2) are thus equivalent.

A Bézout domain is a Prüfer domain, i.e., a domain in which each finitely generated ideal is invertible, or said another way, a commutative semihereditary domain.)

Consequently, one may view the equivalence『Bézout domain iff Prüfer domain and GCD-domain』as analogous to the more familiar "PID iff Dedekind domain and UFD".

Prüfer domains can be characterized as integral domains whose localizations at all prime (equivalently, at all maximal) ideals are valuation domains. So the localization of a Bézout domain at a prime ideal is a valuation domain. Since an invertible ideal in a local ring is principal, a local ring is a Bézout domain iff it is a valuation domain. Moreover, a valuation domain with noncyclic (equivalently non-discrete) value group is not Noetherian, and every totally ordered abelian group is the value group of some valuation domain. This gives many examples of non-Noetherian Bézout domains.

In noncommutative algebra, right Bézout domains are domains whose finitely generated right ideals are principal right ideals, that is, of the form xR for some xinR. One notable result is that a right Bézout domain is a right Ore domain. This fact is not interesting in the commutative case, since every commutative domain is an Ore domain. Right Bézout domains are also right semihereditary rings.

Modules over a Bézout domain[edit]

Some facts about modules over a PID extend to modules over a Bézout domain. Let R be a Bézout domain and M finitely generated module over R. Then M is flat if and only if it is torsion-free.[2]

See also[edit]

References[edit]

  1. ^ Cohn
  • ^ Bourbaki 1989, Ch I, §2, no 4, Proposition 3
  • Bibliography[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Bézout_domain&oldid=1185369538"

    Categories: 
    Commutative algebra
    Ring theory
     



    This page was last edited on 16 November 2023, at 08:03 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki