Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Overview  





2 Importance in linear circuits  





3 Bipolar junction transistors  





4 Vacuum tubes (thermionic valves)  





5 Microphones  





6 See also  





7 References  





8 Further reading  














Biasing






العربية
Català
Dansk
Deutsch
Español
فارسی
Français

ि
עברית

Polski
Русский
Simple English
Српски / srpski
Svenska


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Bias current)

A graphical representation of the current and voltage properties of a transistor; the bias is selected so that the operating point permits maximum signal amplitude without distortion.

Inelectronics, biasing is the setting of DC (direct current) operating conditions (current and voltage) of an electronic component that processes time-varying signals. Many electronic devices, such as diodes, transistors and vacuum tubes, whose function is processing time-varying (AC) signals, also require a steady (DC) current or voltage at their terminals to operate correctly. This current or voltage is called bias. The AC signal applied to them is superposed on this DC bias current or voltage.

The operating point of a device, also known as bias point, quiescent point, or Q-point, is the DC voltage or current at a specified terminal of an active device (a transistor or vacuum tube) with no input signal applied. A bias circuit is a portion of the device's circuit that supplies this steady current or voltage.

Overview[edit]

In electronics, 'biasing' usually refers to a fixed DC voltage or current applied to a terminal of an electronic component such as a diode, transistor or vacuum tube in a circuit in which AC signals are also present, in order to establish proper operating conditions for the component. For example, a bias voltage is applied to a transistor in an electronic amplifier to allow the transistor to operate in a particular region of its transconductance curve. For vacuum tubes, a grid bias voltage is often applied to the grid electrodes for the same reason.[citation needed]

Inmagnetic tape recording, the term bias is also used for a high-frequency signal added to the audio signal and applied to the recording head, to improve the quality of the recording on the tape. This is called tape bias.[citation needed]

Importance in linear circuits[edit]

Linear circuits involving transistors typically require specific DC voltages and currents for correct operation, which can be achieved using a biasing circuit. As an example of the need for careful biasing, consider a transistor amplifier. In linear amplifiers, a small input signal gives a larger output signal without any change in shape (low distortion): the input signal causes the output signal to vary up and down about the Q-point in a manner strictly proportional to the input. However, because the relationship between input and output for a transistor is not linear across its full operating range, the transistor amplifier only approximates linear operation. For low distortion, the transistor must be biased so the output signal swing does not drive the transistor into a region of extremely nonlinear operation. For a bipolar junction transistor amplifier, this requirement means that the transistor must stay in the active mode, and avoid cut-off or saturation. The same requirement applies to a MOSFET amplifier, although the terminology differs a little: the MOSFET must stay in the active mode, and avoid cutoff or ohmic operation.[citation needed]

Bipolar junction transistors[edit]

For bipolar junction transistors the bias point is chosen to keep the transistor operating in the active mode, using a variety of circuit techniques, establishing the Q-point DC voltage and current. A small signal is then applied on top of the bias. The Q-point is typically near the middle of the DC load line, so as to obtain the maximum available peak-to-peak signal amplitude without distortion due to clipping as the transistor reaches saturation or cut-off. The process of obtaining an appropriate DC collector current at a certain DC collector voltage by setting up the operating point is called biasing.[citation needed]

Vacuum tubes (thermionic valves)[edit]

Grid bias is the DC voltage provided at the control grid of a vacuum tube relative to the cathode for the purpose of establishing the zero input signal or steady state operating condition of the tube.[1][2]

There are many methods of achieving grid bias. Combinations of bias methods may be used on the same tube.

Microphones[edit]

Electret microphone elements typically include a junction field-effect transistor as an impedance converter to drive other electronics within a few meters of the microphone. The operating current of this JFET is typically 0.1 to 0.5 mA and is often referred to as bias, which is different from the phantom power interface which supplies 48 volts to operate the backplate of a traditional condenser microphone.[12] Electret microphone bias is sometimes supplied on a separate conductor.[13]

See also[edit]

References[edit]

  1. ^ a b Veley, Victor F. C. (1987). The Benchtop Electronics Reference Manual (1st ed.). New York: Tab Books. pp. 450–454.
  • ^ a b Landee, Davis, Albrecht, Electronic Designers' Handbook, New York: McGraw-Hill, 1957, p. 2-27.
  • ^ Landee et al., 1957, p. 4-19.
  • ^ a b c Orr, William I., ed. (1962). The Radio Handbook (16th ed.). New Augusta Indiana: Editors and Engineers, LTD. pp. 266–267.
  • ^ Headquarters, Department of the Army (1952). C-W and A-M Radio Transmitters and Receivers. Washington, D.C.: United States Government Publishing Office. p. 97. TM 11-665.
  • ^ Everitt, William Littell (1937). Communication Engineering (2nd ed.). New York: McGraw-Hill. pp. 538-539.
  • ^ RCA Manufacturing Co. (1940). Receiving Tube Manual RC-14. Harrison, NJ: RCA. p. 38.
  • ^ Ghirardi, Alfred A. (1932). Radio Physics Course (2nd ed.). New York: Rinehart Books. pp. 505, 770–771.
  • ^ Giacoletto, Lawrence Joseph (1977). Electronics Designers' Handbook. New York: McGraw-Hill. p. 9-27.
  • ^ Tomer, Robert B. (1960). Getting the Most Out of Vacuum Tubes. Indianapolis: Howard W. Sams & Co./The Bobbs-Merrill Company. p. 28.
  • ^ a b Landee et al., 1957, p. 2-28.
  • ^ "Phantom Power and Bias Voltage: Is There A Difference?". 2007-02-05. Archived from the original on 2009-09-08.
  • ^ IEC Standard 61938(subscription required)
  • Further reading[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Biasing&oldid=1225804696"

    Categories: 
    Electronic engineering
    Vacuum tubes
    Hidden categories: 
    Pages containing links to subscription-only content
    Articles with short description
    Short description is different from Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from December 2022
     



    This page was last edited on 26 May 2024, at 20:42 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki