Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 In space  





2 Nanoscale  





3 See also  





4 References  





5 Further reading  





6 External links  














Cold welding






العربية

Català
Deutsch
Eesti
Español
فارسی
Français
Hrvatski
Bahasa Indonesia
עברית
Nederlands
Русский
Svenska

Türkçe
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Cold weld)

Cross-section of cold welding – before and after the weld

Cold weldingorcontact welding is a solid-state welding process in which joining takes place without fusion or heating at the interface of the two parts to be welded. Unlike in fusion welding, no liquid or molten phase is present in the joint.

Cold welding was first recognized as a general materials phenomenon in the 1940s. It was then discovered that two clean, flat surfaces of similar metal would strongly adhere if brought into contact while in a vacuum (see Van der Waals force). Newly[when?] discovered micro-[1] and nano-scale cold welding[2] has shown potential in nanofabrication processes.

The reason for this unexpected behavior is that when the atoms in contact are all of the same kind, there is no way for the atoms to "know" that they are in different pieces of copper. When there are other atoms, in the oxides and greases and more complicated thin surface layers of contaminants in between, the atoms "know" when they are not on the same part.

Applications include wire stock and electrical connections (such as insulation-displacement connectors and wire wrap connections).

In space

[edit]

Mechanical problems in early satellites were sometimes attributed to cold welding.

In 2009 the European Space Agency published a peer reviewed paper detailing why cold welding is a significant issue that spacecraft designers need to carefully consider.[3] The paper also cites a documented example[4] from 1991 with the Galileo spacecraft high-gain antenna.

One source of difficulty is that cold welding does not exclude relative motion between the surfaces that are to be joined. This allows the broadly defined notions of galling, fretting, stiction and adhesion to overlap in some instances. For example, it is possible for a joint to be the result of both cold (or "vacuum") welding and galling (or fretting or impact). Galling and cold welding, therefore, are not mutually exclusive.

Nanoscale

[edit]

Unlike cold welding process at macro-scale which normally requires large applied pressures, scientists discovered that single-crystalline ultra-thin gold nanowires (diameters less than 10 nm) can be cold-welded together within seconds by mechanical contact alone, and under remarkably low applied pressures.[2] High-resolution transmission electron microscopy and in-situ measurements reveal that the welds are nearly perfect, with the same crystal orientation, strength and electrical conductivity as the rest of the nanowire. The high quality of the welds is attributed to the nanoscale sample dimensions, oriented-attachment mechanisms and mechanically assisted fast surface diffusion. Nanoscale welds were also demonstrated between gold and silver, and silver and silver, indicating that the phenomenon may be generally applicable and therefore offer an atomistic view of the initial stages of macroscopic cold welding for either bulk metals or metallic thin film.[2]

See also

[edit]

References

[edit]
  1. ^ Ferguson, Gregory S.; Chaudhury, Manoj K.; Sigal, George B.; Whitesides, George M. (1991). "Contact Adhesion of Thin Gold Films on Elastomeric Supports: Cold Welding Under Ambient Conditions". Science. 253 (5021): 776–778. doi:10.1126/science.253.5021.776. JSTOR 2879122. PMID 17835496. S2CID 10479300.
  • ^ a b c Lu, Yang; Huang, Jian Yu; Wang, Chao; Sun, Shouheng; Lou, Jun (2010). "Cold welding of ultrathin gold nanowires". Nature Nanotechnology. 5 (3): 218–224. doi:10.1038/nnano.2010.4. PMID 20154688.
  • ^ A. Merstallinger; M. Sales; E. Semerad; B. D. Dunn (2009). Assessment of Cold Welding between Separable Contact Surfaces due to Impact and Fretting under Vacuum (PDF). European Space Agency. ISBN 978-92-9221-900-0. ISSN 0379-4067. OCLC 55971016. ESA STM-279. Retrieved 24 February 2013.
  • ^ Johnson, Michael R. (1994). "The Galileo High Gain Antenna Deployment Anomaly" (PDF). Nasa. Lewis Research Center, the 28th Aerospace Mechanisms Symposium. NASA Jet Propulsion Laboratory. hdl:2014/32404. Archived from the original (PDF) on 8 February 2018. Retrieved 1 December 2016.
  • Further reading

    [edit]
    [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Cold_welding&oldid=1231737644"

    Category: 
    Welding
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Articles needing additional references from October 2010
    All articles needing additional references
    All articles with vague or ambiguous time
    Vague or ambiguous time from June 2024
     



    This page was last edited on 30 June 2024, at 00:13 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki