Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Formation  





2 Structure  





3 Column heights  





4 Hazards  



4.1  Column collapse  





4.2  Aircraft  







5 See also  





6 References  





7 Further reading  





8 External links  














Eruption column






Afrikaans
العربية
Български
Català
Čeština
Deutsch
Español
Français

Bahasa Indonesia
Íslenska
Italiano
עברית
Magyar
Nederlands

Norsk bokmål
Português
Slovenščina
کوردی

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Column collapse)

Satellite animation of the initial eruption column and shockwave from Hunga Tonga–Hunga Haʻapai on 15 January 2022

Aneruption columnoreruption plume is a cloud of super-heated ash and tephra suspended in gases emitted during an explosive volcanic eruption. The volcanic materials form a vertical column or plume that may rise many kilometers into the air above the vent of the volcano. In the most explosive eruptions, the eruption column may rise over 40 km (25 mi), penetrating the stratosphere. Stratospheric injection of aerosols by volcanoes is a major cause of short-term climate change.

A common occurrence in explosive eruptions is column collapse when the eruption column is or becomes too dense to be lifted high into the sky by air convection, and instead falls down the slopes of the volcano to form pyroclastic flowsorsurges (although the latter is less dense). On some occasions, if the material is not dense enough to fall, it may create pyrocumulonimbus clouds.

Formation[edit]

Eruption column over Mount Pinatubo in the Philippines, 1991

Eruption columns form in explosive volcanic activity, when the high concentration of volatile materials in the rising magma causes it to be disrupted into fine volcanic ash and coarser tephra. The ash and tephra are ejected at speeds of several hundred metres per second, and can rise rapidly to heights of several kilometres, lifted by enormous convection currents.

Eruption columns may be transient, if formed by a discrete explosion, or sustained, if produced by a continuous eruption or closely spaced discrete explosions.

Structure[edit]

The solid and liquid materials in an eruption column are lifted by processes that vary as the material ascends:[1]

Column heights[edit]

Eruption column rising over Redoubt Volcano, Alaska, on 21 April 1990, which reached a height of about 9 km (5.6 mi)[2]

The column will stop rising once it attains an altitude where it is more dense than the surrounding air. Several factors control the height that an eruption column can reach.

Intrinsic factors include the diameter of the erupting vent, the gas content of the magma, and the velocity at which it is ejected. Extrinsic factors can be important, with winds sometimes limiting the height of the column, and the local thermal temperature gradient also playing a role. The atmospheric temperature in the troposphere normally decreases by about 6-7 K/km, but small changes in this gradient can have a large effect on the final column height. Theoretically, the maximum achievable column height is thought to be about 55 km (34 mi). In practice, column heights ranging from about 2–45 km (1.2–28.0 mi) are seen.

Eruption columns with heights of over 20–40 km (12–25 mi) break through the tropopause and inject particulates into the stratosphere. Ashes and aerosols in the troposphere are quickly removed by precipitation, but material injected into the stratosphere is much more slowly dispersed, in the absence of weather systems. Substantial amounts of stratospheric injection can have global effects: after Mount Pinatubo erupted in 1991, global temperatures dropped by about 0.5 °C (0.90 °F). The largest eruptions are thought to cause temperature drops down to several degrees, and are potentially the cause of some of the known mass extinctions.

Eruption column heights are a useful way of measuring eruption intensity since for a given atmospheric temperature, the column height is proportional to the fourth root of the mass eruption rate. Consequently, given similar conditions, to double the column height requires an eruption ejecting 16 times as much material per second. The column height of eruptions which have not been observed can be estimated by mapping the maximum distance that pyroclasts of different sizes are carried from the vent—the higher the column the further ejected material of a particular mass (and therefore size) can be carried.

The approximate maximum height of an eruption column is given by the equation.

H = k(MΔT)1/4

Where:[clarification needed]

k is a constant that depends on various properties, such as atmospheric conditions.
M is the mass eruption rate.
ΔT is the difference in temperature between the erupting magma and the surrounding atmosphere.

Hazards[edit]

Column collapse[edit]

The eruption column produced by the 1980 eruption of Mount St. Helens as seen from the village of Toledo, Washington, which is 56 km (35 mi) away. The cloud was roughly 64 km (40 mi) wide and 24 km; 79,000 ft (15 mi) high.

Eruption columns may become so laden with dense material that they are too heavy to be supported by convection currents. This can suddenly happen if, for example, the rate at which magma is erupted increases to a point where insufficient air is entrained to support it, or if the magma density suddenly increases as denser magma from lower regions in a stratified magma chamber is tapped.

If it does happen, then material reaching the bottom of the convective thrust region can no longer be adequately supported by convection and will fall under gravity, forming a pyroclastic floworsurge which can travel down the slopes of a volcano at speeds of over 100–200 km/h (62–124 mph). Column collapse is one of the most common and dangerous volcanic hazards in column-creating eruptions.

Aircraft[edit]

Several eruptions have seriously endangered aircraft which have encountered or passed by the eruption column. In two separate incidents in 1982, airliners flew into the upper reaches of an eruption column blasted off by Mount Galunggung, and the ash severely damaged both aircraft. Particular hazards were the ingestion of ash stopping the engines, the sandblasting of the cockpit windows rendering them largely opaque and the contamination of fuel through the ingestion of ash through pressurisation ducts. The damage to engines is a particular problem since temperatures inside a gas turbine are sufficiently high that volcanic ash is melted in the combustion chamber, and forms a glass coating on components farther downstream of it, for example on turbine blades.

In the case of British Airways Flight 9, the aircraft lost power on all four engines, and in the other, nineteen days later, three of the four engines failed on a Singapore Airlines 747. In both cases, engines were successfully restarted, but the aircraft were forced to make emergency landings in Jakarta.

Similar damage to aircraft occurred due to an eruption column over Redoubt volcano in Alaska in 1989. Following the eruption of Mount Pinatubo in 1991, aircraft were diverted to avoid the eruption column, but nonetheless, fine ash dispersing over a wide area in Southeast Asia caused damage to 16 aircraft, some as far as 1,000 km (620 mi) from the volcano.

Eruption columns are not usually visible on weather radar and may be obscured by ordinary clouds or night.[3] Because of the risks posed to aviation by eruption columns, there is a network of nine Volcanic Ash Advisory Centers around the world which continuously monitor for eruption columns using data from satellites, ground reports, pilot reports and meteorological models.[4]

See also[edit]

References[edit]

  1. ^ "How volcanoes work – The eruption model (QuickTime movie)". San Diego State University. Archived from the original on 2007-07-01. Retrieved 2007-06-30.
  • ^ "Bulletin of the Global Volcanism Network; volume 15 number 4 (April 1990)". Global Volcanism Program. Smithsonian Institution. 1990. Retrieved 14 January 2018.
  • ^ Mitchell Roth; Rick Guritz (July 1995). "Visualization of Volcanic ash clouds". IEEE Computer Graphics and Applications. 15 (4): 34–39. doi:10.1109/38.391488.
  • ^ "Keeping aircraft clear of volcanic ash - Darwin Volcanic Ash Advisory Center". Australian Government - Bureau of Meteorology. Retrieved 2007-06-30.
  • Further reading[edit]

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Eruption_column&oldid=1200721341"

    Categories: 
    Volcanoes
    Volcanic eruptions
    Explosive eruptions
    Volcanic degassing
    Tephra
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Articles needing additional references from July 2021
    All articles needing additional references
    Wikipedia articles needing clarification from June 2021
    All articles with dead external links
    Articles with dead external links from September 2017
    Articles with permanently dead external links
    Commons category link is on Wikidata
     



    This page was last edited on 30 January 2024, at 03:29 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki