Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Generators  





2 Commutation relations  





3 Applications  



3.1  Conformal field theory  





3.2  Second-order phase transitions  





3.3  High-energy physics  







4 Mathematical proofs of conformal invariance in lattice models  





5 See also  





6 References  





7 Sources  














Conformal symmetry






Català
Español
Français


Português

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Conformal invariance)

Inmathematical physics, the conformal symmetryofspacetime is expressed by an extension of the Poincaré group, known as the conformal group. The extension includes special conformal transformations and dilations. In three spatial plus one time dimensions, conformal symmetry has 15 degrees of freedom: ten for the Poincaré group, four for special conformal transformations, and one for a dilation.

Harry Bateman and Ebenezer Cunningham were the first to study the conformal symmetry of Maxwell's equations. They called a generic expression of conformal symmetry a spherical wave transformation. General relativity in two spacetime dimensions also enjoys conformal symmetry.[1]

Generators[edit]

The Lie algebra of the conformal group has the following representation:[2]

where are the Lorentz generators, generates translations, generates scaling transformations (also known as dilatations or dilations) and generates the special conformal transformations.

Commutation relations[edit]

The commutation relations are as follows:[2]

other commutators vanish. Here is the Minkowski metric tensor.

Additionally, is a scalar and is a covariant vector under the Lorentz transformations.

The special conformal transformations are given by[3]

where is a parameter describing the transformation. This special conformal transformation can also be written as , where

which shows that it consists of an inversion, followed by a translation, followed by a second inversion.

A coordinate grid prior to a special conformal transformation
The same grid after a special conformal transformation

In two dimensional spacetime, the transformations of the conformal group are the conformal transformations. There are infinitely many of them.

In more than two dimensions, Euclidean conformal transformations map circles to circles, and hyperspheres to hyperspheres with a straight line considered a degenerate circle and a hyperplane a degenerate hypercircle.

In more than two Lorentzian dimensions, conformal transformations map null rays to null rays and light cones to light cones with a null hyperplane being a degenerate light cone.

Applications[edit]

Conformal field theory[edit]

In relativistic quantum field theories, the possibility of symmetries is strictly restricted by Coleman–Mandula theorem under physically reasonable assumptions. The largest possible global symmetry group of a non-supersymmetric interacting field theory is a direct product of the conformal group with an internal group.[4] Such theories are known as conformal field theories.

Second-order phase transitions[edit]

One particular application is to critical phenomena in systems with local interactions. Fluctuations[clarification needed] in such systems are conformally invariant at the critical point. That allows for classification of universality classes of phase transitions in terms of conformal field theories

Conformal invariance is also present in two-dimensional turbulence at high Reynolds number.[citation needed]

High-energy physics[edit]

Many theories studied in high-energy physics admit conformal symmetry due to it typically being implied by local scale invariance (see here for motivation and counterexamples). A famous example is d=4, N=4 supersymmetric Yang–Mills theory due its relevance for AdS/CFT correspondence. Also, the worldsheetinstring theory is described by a two-dimensional conformal field theory coupled to two-dimensional gravity.

Mathematical proofs of conformal invariance in lattice models[edit]

Physicists have found that many lattice models become conformally invariant in the critical limit. However, mathematical proofs of these results have only appeared much later, and only in some cases.

In 2010, the mathematician Stanislav Smirnov was awarded the Fields medal "for the proof of conformal invarianceofpercolation and the planar Ising model in statistical physics".[5]

In 2020, the mathematician Hugo Duminil-Copin and his collaborators proved that rotational invariance exists at the boundary between phases in many physical systems.[6][7]

See also[edit]

References[edit]

  1. ^ "gravity - What makes General Relativity conformal variant?". Physics Stack Exchange. Retrieved 2020-05-01.
  • ^ a b Di Francesco, Mathieu & Sénéchal 1997, p. 98.
  • ^ Di Francesco, Mathieu & Sénéchal 1997, p. 97.
  • ^ Juan Maldacena; Alexander Zhiboedov (2013). "Constraining conformal field theories with a higher spin symmetry". Journal of Physics A: Mathematical and Theoretical. 46 (21): 214011. arXiv:1112.1016. Bibcode:2013JPhA...46u4011M. doi:10.1088/1751-8113/46/21/214011. S2CID 56398780.
  • ^ Rehmeyer, Julie (19 August 2010). "Stanislav Smirnov profile" (PDF). International Congress of Mathematicians. Archived from the original (PDF) on 7 March 2012. Retrieved 19 August 2010.
  • ^ "Mathematicians Prove Symmetry of Phase Transitions". Wired. ISSN 1059-1028. Retrieved 2021-07-14.
  • ^ Duminil-Copin, Hugo; Kozlowski, Karol Kajetan; Krachun, Dmitry; Manolescu, Ioan; Oulamara, Mendes (2020-12-21). "Rotational invariance in critical planar lattice models". arXiv:2012.11672 [math.PR].
  • Sources[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Conformal_symmetry&oldid=1190943004"

    Categories: 
    Symmetry
    Scaling symmetries
    Conformal field theory
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Articles to be expanded from March 2017
    All articles to be expanded
    Articles using small message boxes
    Wikipedia articles needing clarification from March 2017
    All articles with unsourced statements
    Articles with unsourced statements from February 2023
     



    This page was last edited on 20 December 2023, at 19:23 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki