Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Integer and fractional parts  





2 Finite decimal approximations  





3 Non-uniqueness of decimal representation and notational conventions  





4 Types  



4.1  Finite  





4.2  Infinite  



4.2.1  Repeating decimal representations  





4.2.2  Non-repeating decimal representations  









5 Conversion to fraction  





6 See also  





7 References  





8 Further reading  














Decimal representation






العربية
Brezhoneg
Català
Čeština
Español
فارسی
Føroyskt
Français

Bahasa Indonesia
Mirandés

Norsk bokmål
Norsk nynorsk
Português
کوردی
Svenska
ி

Tiếng Vit


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Decimal expansion)

Adecimal representation of a non-negative real number r is its expression as a sequence of symbols consisting of decimal digits traditionally written with a single separator: Here . is the decimal separator, k is a nonnegative integer, and are digits, which are symbols representing integers in the range 0, ..., 9.

Commonly, if The sequence of the —the digits after the dot—is generally infinite. If it is finite, the lacking digits are assumed to be 0. If all are 0, the separator is also omitted, resulting in a finite sequence of digits, which represents a natural number.

The decimal representation represents the infinite sum:

Every nonnegative real number has at least one such representation; it has two such representations (with if) if and only if one has a trailing infinite sequence of 0, and the other has a trailing infinite sequence of 9. For having a one-to-one correspondence between nonnegative real numbers and decimal representations, decimal representations with a trailing infinite sequence of 9 are sometimes excluded.[1]

Integer and fractional parts

[edit]

The natural number , is called the integer partofr, and is denoted by a0 in the remainder of this article. The sequence of the represents the number which belongs to the interval and is called the fractional partofr (except when all are 9).

Finite decimal approximations

[edit]

Any real number can be approximated to any desired degree of accuracy by rational numbers with finite decimal representations.

Assume . Then for every integer there is a finite decimal such that:

Proof: Let , where . Then , and the result follows from dividing all sides by . (The fact that has a finite decimal representation is easily established.)

Non-uniqueness of decimal representation and notational conventions

[edit]

Some real numbers have two infinite decimal representations. For example, the number 1 may be equally represented by 1.000... as by 0.999... (where the infinite sequences of trailing 0's or 9's, respectively, are represented by "..."). Conventionally, the decimal representation without trailing 9's is preferred. Moreover, in the standard decimal representationof, an infinite sequence of trailing 0's appearing after the decimal point is omitted, along with the decimal point itself if is an integer.

Certain procedures for constructing the decimal expansion of will avoid the problem of trailing 9's. For instance, the following algorithmic procedure will give the standard decimal representation: Given , we first define (the integer partof) to be the largest integer such that (i.e., ). If the procedure terminates. Otherwise, for already found, we define inductively to be the largest integer such that:

(*)

The procedure terminates whenever is found such that equality holds in (*); otherwise, it continues indefinitely to give an infinite sequence of decimal digits. It can be shown that [2] (conventionally written as ), where and the nonnegative integer is represented in decimal notation. This construction is extended to by applying the above procedure to and denoting the resultant decimal expansion by .

Types

[edit]

Finite

[edit]

The decimal expansion of non-negative real number x will end in zeros (or in nines) if, and only if, x is a rational number whose denominator is of the form 2n5m, where m and n are non-negative integers.

Proof:

If the decimal expansion of x will end in zeros, or for some n, then the denominator of x is of the form 10n = 2n5n.

Conversely, if the denominator of x is of the form 2n5m, for some p. While x is of the form , for some n. By , x will end in zeros.

Infinite

[edit]

Repeating decimal representations

[edit]

Some real numbers have decimal expansions that eventually get into loops, endlessly repeating a sequence of one or more digits:

13 = 0.33333...
17 = 0.142857142857...
1318185 = 7.1243243243...

Every time this happens the number is still a rational number (i.e. can alternatively be represented as a ratio of an integer and a positive integer). Also the converse is true: The decimal expansion of a rational number is either finite, or endlessly repeating.

Finite decimal representations can also be seen as a special case of infinite repeating decimal representations. For example, 3625 = 1.44 = 1.4400000...; the endlessly repeated sequence is the one-digit sequence "0".

Non-repeating decimal representations

[edit]

Other real numbers have decimal expansions that never repeat. These are precisely the irrational numbers, numbers that cannot be represented as a ratio of integers. Some well-known examples are:

2 = 1.41421356237309504880...
  e  = 2.71828182845904523536...
  π  = 3.14159265358979323846...

Conversion to fraction

[edit]

Every decimal representation of a rational number can be converted to a fraction by converting it into a sum of the integer, non-repeating, and repeating parts and then converting that sum to a single fraction with a common denominator.

For example, to convert to a fraction one notes the lemma:

Thus one converts as follows:

If there are no repeating digits one assumes that there is a forever repeating 0, e.g. , although since that makes the repeating term zero the sum simplifies to two terms and a simpler conversion.

For example:

See also

[edit]

References

[edit]
  1. ^ Knuth, Donald Ervin (1973). The Art of Computer Programming. Vol. 1: Fundamental Algorithms. Addison-Wesley. p. 21.
  • ^ Rudin, Walter (1976). Principles of Mathematical Analysis. New York: McGraw-Hill. p. 11. ISBN 0-07-054235-X.
  • Further reading

    [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Decimal_representation&oldid=1213253083"

    Category: 
    Mathematical notation
    Hidden categories: 
    CS1: long volume value
    Articles with short description
    Short description is different from Wikidata
    Articles needing additional references from January 2022
    All articles needing additional references
    Articles with NDL identifiers
    Articles containing proofs
     



    This page was last edited on 11 March 2024, at 22:48 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki