Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Examples  



1.1  ODE  





1.2  PDE  





1.3  Applications  







2 Other boundary conditions  





3 See also  





4 References  














Dirichlet boundary condition






Bosanski
Català
Deutsch
Español
Français

Italiano

Polski
Português
Русский
Svenska
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Dirichlet boundary conditions)

In mathematics, the Dirichlet boundary condition is imposed on an ordinaryorpartial differential equation, such that the values that the solution takes along the boundary of the domain are fixed. The question of finding solutions to such equations is known as the Dirichlet problem. In the sciences and engineering, a Dirichlet boundary condition may also be referred to as a fixed boundary conditionorboundary condition of the first type. It is named after Peter Gustav Lejeune Dirichlet (1805–1859).[1]

Infinite-element analysis, the essential or Dirichlet boundary condition is defined by weighted-integral form of a differential equation.[2] The dependent unknown u in the same form as the weight function w appearing in the boundary expression is termed a primary variable, and its specification constitutes the essential or Dirichlet boundary condition.

Examples[edit]

ODE[edit]

For an ordinary differential equation, for instance, the Dirichlet boundary conditions on the interval [a,b] take the form where α and β are given numbers.

PDE[edit]

For a partial differential equation, for example, where denotes the Laplace operator, the Dirichlet boundary conditions on a domain Ω ⊂ Rn take the form where f is a known function defined on the boundary ∂Ω.

Applications[edit]

For example, the following would be considered Dirichlet boundary conditions:

Other boundary conditions[edit]

Many other boundary conditions are possible, including the Cauchy boundary condition and the mixed boundary condition. The latter is a combination of the Dirichlet and Neumann conditions.

See also[edit]

References[edit]

  1. ^ Cheng, A.; Cheng, D. T. (2005). "Heritage and early history of the boundary element method". Engineering Analysis with Boundary Elements. 29 (3): 268–302. doi:10.1016/j.enganabound.2004.12.001.
  • ^ Reddy, J. N. (2009). "Second order differential equations in one dimension: Finite element models". An Introduction to the Finite Element Method (3rd ed.). Boston: McGraw-Hill. p. 110. ISBN 978-0-07-126761-8.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Dirichlet_boundary_condition&oldid=1226261759"

    Category: 
    Boundary conditions
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
     



    This page was last edited on 29 May 2024, at 14:50 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki